sealed abstract class FreeAp[F[_], A] extends AnyRef
Free applicative functors. Less expressive than free monads, but more flexible to inspect and interpret.
- Source
- FreeAp.scala
- Alphabetic
- By Inheritance
- FreeAp
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
analyze[M](f: ~>[F, [α]M])(implicit arg0: Monoid[M]): M
Performs a monoidal analysis over this free program.
Performs a monoidal analysis over this free program. Maps the effects in
F
to values in the monoidM
, discarding the values of those effects. Example:def count[F[_],B](p: FreeAp[F,B]): Int = p.analyze(new (F ~> λ[α => Int]) { def apply[A](a: F[A]) = 1 })
-
def
ap[B](f: FreeAp[F, (A) ⇒ B]): FreeAp[F, B]
Idiomatic function application
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
def
clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
-
def
foldMap[G[_]](f: ~>[F, G])(implicit arg0: Applicative[G]): G[A]
The canonical natural transformation that interprets this free program by giving it the semantics of the applicative functor
G
.The canonical natural transformation that interprets this free program by giving it the semantics of the applicative functor
G
. Not tail-recursive unlessG
is a free monad. -
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
def
hoist[G[_]](f: ~>[F, G]): FreeAp[G, A]
The natural transformation from
FreeAp[F,_]
toFreeAp[G,_]
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
def
map[B](f: (A) ⇒ B): FreeAp[F, B]
Append a function to the end of this program
-
def
monadic: Free[F, A]
Embeds this program in the free monad on
F
. -
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
def
para[B](pure: (A) ⇒ B, ap: ~>[[α](F[α], FreeAp[F, (α) ⇒ A]), [α]B]): B
Provides access to the first instruction of this program, if present
-
def
retract(implicit F: Applicative[F]): F[A]
Interprets this free
F
program using the semantics of theApplicative
instance forF
. -
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
def
toString(): String
- Definition Classes
- AnyRef → Any
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()