trait Bifunctor[F[_, _]] extends BifunctorParent[F]
A type giving rise to two unrelated scalaz.Functors.
- Self Type
- Bifunctor[F]
- Source
- Bifunctor.scala
- Alphabetic
- By Inheritance
- Bifunctor
- BifunctorParent
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Abstract Value Members
-
abstract
def
bimap[A, B, C, D](fab: F[A, B])(f: (A) ⇒ C, g: (B) ⇒ D): F[C, D]
map
over both type parameters.
Concrete Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
- val bifunctorSyntax: BifunctorSyntax[F]
-
def
clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
-
def
compose[G[_, _]](implicit G0: Bifunctor[G]): Bifunctor[[α, β]F[G[α, β], G[α, β]]]
The composition of Bifunctors
F
andG
,[x,y]F[G[x,y],G[x,y]]
, is a Bifunctor -
def
embed[G[_], H[_]](implicit G0: Functor[G], H0: Functor[H]): Bifunctor[[α, β]F[G[α], H[β]]]
Embed two Functors , one on each side
-
def
embedLeft[G[_]](implicit G0: Functor[G]): Bifunctor[[α, β]F[G[α], β]]
Embed one Functor to the left
-
def
embedRight[H[_]](implicit H0: Functor[H]): Bifunctor[[α, β]F[α, H[β]]]
Embed one Functor to the right
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
def
leftFunctor[X]: Functor[[α$0$]F[α$0$, X]]
Extract the Functor on the first param.
- def leftMap[A, B, C](fab: F[A, B])(f: (A) ⇒ C): F[C, B]
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
def
product[G[_, _]](implicit G0: Bifunctor[G]): Bifunctor[[α, β](F[α, β], G[α, β])]
The product of Bifunctors
F
andG
,[x,y](F[x,y], G[x,y])
, is a Bifunctor -
def
rightFunctor[X]: Functor[[β$1$]F[X, β$1$]]
Extract the Functor on the second param.
- def rightMap[A, B, D](fab: F[A, B])(g: (B) ⇒ D): F[A, D]
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
def
toString(): String
- Definition Classes
- AnyRef → Any
-
def
uFunctor: Functor[[α]F[α, α]]
Unify the functor over both params.
- def umap[A, B](faa: F[A, A])(f: (A) ⇒ B): F[B, B]
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
-
def
widen[A, B, C >: A, D >: B](fab: F[A, B]): F[C, D]
Bifunctors are covariant by nature
Bifunctors are covariant by nature
- Definition Classes
- BifunctorParent