trait TraverseLaw extends FunctorLaw
- Alphabetic
- By Inheritance
- TraverseLaw
- FunctorLaw
- InvariantFunctorLaw
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
def
clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
-
def
composite[A, B, C](fa: F[A], f1: (A) ⇒ B, f2: (B) ⇒ C)(implicit FC: Equal[F[C]]): Boolean
A series of maps may be freely rewritten as a single map on a composed function.
A series of maps may be freely rewritten as a single map on a composed function.
- Definition Classes
- FunctorLaw
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
def
identity[A](fa: F[A])(implicit FA: Equal[F[A]]): Boolean
The identity function, lifted, is a no-op.
The identity function, lifted, is a no-op.
- Definition Classes
- FunctorLaw
-
def
identityTraverse[A, B](fa: F[A], f: (A) ⇒ B)(implicit FB: Equal[F[B]]): Boolean
Traversal through the scalaz.Id effect is equivalent to
Functor#map
-
def
invariantComposite[A, B, C](fa: F[A], f1: (A) ⇒ B, g1: (B) ⇒ A, f2: (B) ⇒ C, g2: (C) ⇒ B)(implicit FC: Equal[F[C]]): Boolean
- Definition Classes
- InvariantFunctorLaw
-
def
invariantIdentity[A](fa: F[A])(implicit FA: Equal[F[A]]): Boolean
- Definition Classes
- InvariantFunctorLaw
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
def
naturality[N[_], M[_], A](nat: ~>[M, N])(fma: F[M[A]])(implicit N: Applicative[N], M: Applicative[M], NFA: Equal[N[F[A]]]): Boolean
- nat
A natural transformation from
M
toN
for which these properties hold:(a: A) => nat(Applicative[M].point[A](a)) === Applicative[N].point[A](a)
(f: M[A => B], ma: M[A]) => nat(Applicative[M].ap(ma)(f)) === Applicative[N].ap(nat(ma))(nat(f))
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
def
parallelFusion[N[_], M[_], A, B](fa: F[A], amb: (A) ⇒ M[B], anb: (A) ⇒ N[B])(implicit N: Applicative[N], M: Applicative[M], MN: Equal[(M[F[B]], N[F[B]])]): Boolean
Two independent effects can be fused into a single effect, their product.
-
def
purity[G[_], A](fa: F[A])(implicit G: Applicative[G], GFA: Equal[G[F[A]]]): Boolean
Traversal with the
point
function is the same as applying thepoint
function directly -
def
sequentialFusion[N[_], M[_], A, B, C](fa: F[A], amb: (A) ⇒ M[B], bnc: (B) ⇒ N[C])(implicit N: Applicative[N], M: Applicative[M], MN: Equal[M[N[F[C]]]]): Boolean
Two sequentially dependent effects can be fused into one, their composition
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
def
toString(): String
- Definition Classes
- AnyRef → Any
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()