Packages

t

scalaz.effect

IsomorphismMonadIO

trait IsomorphismMonadIO[F[_], G[_]] extends MonadIO[F] with IsomorphismLiftIO[F, G] with IsomorphismMonad[F, G]

Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. IsomorphismMonadIO
  2. IsomorphismMonad
  3. IsomorphismBind
  4. IsomorphismApplicative
  5. IsomorphismApply
  6. IsomorphismFunctor
  7. IsomorphismLiftIO
  8. MonadIO
  9. Monad
  10. Bind
  11. Applicative
  12. Apply
  13. Functor
  14. InvariantFunctor
  15. LiftIO
  16. AnyRef
  17. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Type Members

  1. trait ApplicativeLaw extends ApplyLaw
    Definition Classes
    Applicative
  2. trait ApplyLaw extends FunctorLaw
    Definition Classes
    Apply
  3. trait FlippedApply extends Apply[F]
    Attributes
    protected[this]
    Definition Classes
    Apply
  4. trait BindLaw extends ApplyLaw
    Definition Classes
    Bind
  5. trait FunctorLaw extends InvariantFunctorLaw
    Definition Classes
    Functor
  6. trait InvariantFunctorLaw extends AnyRef
    Definition Classes
    InvariantFunctor
  7. trait MonadLaw extends ApplicativeLaw with BindLaw
    Definition Classes
    Monad

Abstract Value Members

  1. implicit abstract def G: MonadIO[G]
  2. abstract def iso: Isomorphism.<~>[F, G]
    Definition Classes
    IsomorphismFunctor

Concrete Value Members

  1. final def !=(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  4. def ap[A, B](fa: ⇒ F[A])(f: ⇒ F[(A) ⇒ B]): F[B]

    Sequence f, then fa, combining their results by function application.

    Sequence f, then fa, combining their results by function application.

    NB: with respect to apply2 and all other combinators, as well as scalaz.Bind, the f action appears to the *left*. So f should be the "first" F-action to perform. This is in accordance with all other implementations of this typeclass in common use, which are "function first".

    Definition Classes
    IsomorphismApplicativeIsomorphismApplyApply
  5. def ap2[A, B, C](fa: ⇒ F[A], fb: ⇒ F[B])(f: F[(A, B) ⇒ C]): F[C]
    Definition Classes
    Apply
  6. def ap3[A, B, C, D](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C])(f: F[(A, B, C) ⇒ D]): F[D]
    Definition Classes
    Apply
  7. def ap4[A, B, C, D, E](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D])(f: F[(A, B, C, D) ⇒ E]): F[E]
    Definition Classes
    Apply
  8. def ap5[A, B, C, D, E, R](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D], fe: ⇒ F[E])(f: F[(A, B, C, D, E) ⇒ R]): F[R]
    Definition Classes
    Apply
  9. def ap6[A, B, C, D, E, FF, R](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D], fe: ⇒ F[E], ff: ⇒ F[FF])(f: F[(A, B, C, D, E, FF) ⇒ R]): F[R]
    Definition Classes
    Apply
  10. def ap7[A, B, C, D, E, FF, G, R](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D], fe: ⇒ F[E], ff: ⇒ F[FF], fg: ⇒ F[G])(f: F[(A, B, C, D, E, FF, G) ⇒ R]): F[R]
    Definition Classes
    Apply
  11. def ap8[A, B, C, D, E, FF, G, H, R](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D], fe: ⇒ F[E], ff: ⇒ F[FF], fg: ⇒ F[G], fh: ⇒ F[H])(f: F[(A, B, C, D, E, FF, G, H) ⇒ R]): F[R]
    Definition Classes
    Apply
  12. def apF[A, B](f: ⇒ F[(A) ⇒ B]): (F[A]) ⇒ F[B]

    Flipped variant of ap.

    Flipped variant of ap.

    Definition Classes
    Apply
  13. def applicativeLaw: ApplicativeLaw
    Definition Classes
    Applicative
  14. val applicativeSyntax: ApplicativeSyntax[F]
    Definition Classes
    Applicative
  15. def apply[A, B](fa: F[A])(f: (A) ⇒ B): F[B]

    Alias for map.

    Alias for map.

    Definition Classes
    Functor
  16. def apply10[A, B, C, D, E, FF, G, H, I, J, R](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D], fe: ⇒ F[E], ff: ⇒ F[FF], fg: ⇒ F[G], fh: ⇒ F[H], fi: ⇒ F[I], fj: ⇒ F[J])(f: (A, B, C, D, E, FF, G, H, I, J) ⇒ R): F[R]
    Definition Classes
    Apply
  17. def apply11[A, B, C, D, E, FF, G, H, I, J, K, R](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D], fe: ⇒ F[E], ff: ⇒ F[FF], fg: ⇒ F[G], fh: ⇒ F[H], fi: ⇒ F[I], fj: ⇒ F[J], fk: ⇒ F[K])(f: (A, B, C, D, E, FF, G, H, I, J, K) ⇒ R): F[R]
    Definition Classes
    Apply
  18. def apply12[A, B, C, D, E, FF, G, H, I, J, K, L, R](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D], fe: ⇒ F[E], ff: ⇒ F[FF], fg: ⇒ F[G], fh: ⇒ F[H], fi: ⇒ F[I], fj: ⇒ F[J], fk: ⇒ F[K], fl: ⇒ F[L])(f: (A, B, C, D, E, FF, G, H, I, J, K, L) ⇒ R): F[R]
    Definition Classes
    Apply
  19. def apply2[A, B, C](fa: ⇒ F[A], fb: ⇒ F[B])(f: (A, B) ⇒ C): F[C]
    Definition Classes
    ApplicativeApply
  20. def apply3[A, B, C, D](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C])(f: (A, B, C) ⇒ D): F[D]
    Definition Classes
    Apply
  21. def apply4[A, B, C, D, E](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D])(f: (A, B, C, D) ⇒ E): F[E]
    Definition Classes
    Apply
  22. def apply5[A, B, C, D, E, R](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D], fe: ⇒ F[E])(f: (A, B, C, D, E) ⇒ R): F[R]
    Definition Classes
    Apply
  23. def apply6[A, B, C, D, E, FF, R](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D], fe: ⇒ F[E], ff: ⇒ F[FF])(f: (A, B, C, D, E, FF) ⇒ R): F[R]
    Definition Classes
    Apply
  24. def apply7[A, B, C, D, E, FF, G, R](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D], fe: ⇒ F[E], ff: ⇒ F[FF], fg: ⇒ F[G])(f: (A, B, C, D, E, FF, G) ⇒ R): F[R]
    Definition Classes
    Apply
  25. def apply8[A, B, C, D, E, FF, G, H, R](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D], fe: ⇒ F[E], ff: ⇒ F[FF], fg: ⇒ F[G], fh: ⇒ F[H])(f: (A, B, C, D, E, FF, G, H) ⇒ R): F[R]
    Definition Classes
    Apply
  26. def apply9[A, B, C, D, E, FF, G, H, I, R](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D], fe: ⇒ F[E], ff: ⇒ F[FF], fg: ⇒ F[G], fh: ⇒ F[H], fi: ⇒ F[I])(f: (A, B, C, D, E, FF, G, H, I) ⇒ R): F[R]
    Definition Classes
    Apply
  27. def applyApplicative: Applicative[[α]\/[F[α], α]]

    Add a unit to any Apply to form an Applicative.

    Add a unit to any Apply to form an Applicative.

    Definition Classes
    Apply
  28. def applyLaw: ApplyLaw
    Definition Classes
    Apply
  29. val applySyntax: ApplySyntax[F]
    Definition Classes
    Apply
  30. final def asInstanceOf[T0]: T0
    Definition Classes
    Any
  31. def bicompose[G[_, _]](implicit arg0: Bifunctor[G]): Bifunctor[[α, β]F[G[α, β]]]

    The composition of Functor F and Bifunctor G, [x, y]F[G[x, y]], is a Bifunctor

    The composition of Functor F and Bifunctor G, [x, y]F[G[x, y]], is a Bifunctor

    Definition Classes
    Functor
  32. def bind[A, B](fa: F[A])(f: (A) ⇒ F[B]): F[B]

    Equivalent to join(map(fa)(f)).

    Equivalent to join(map(fa)(f)).

    Definition Classes
    IsomorphismBindBind
  33. def bindLaw: BindLaw
    Definition Classes
    Bind
  34. val bindSyntax: BindSyntax[F]
    Definition Classes
    Bind
  35. def clone(): AnyRef
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @native() @throws( ... )
  36. def compose[G[_]](implicit G0: Applicative[G]): Applicative[[α]F[G[α]]]

    The composition of Applicatives F and G, [x]F[G[x]], is an Applicative

    The composition of Applicatives F and G, [x]F[G[x]], is an Applicative

    Definition Classes
    Applicative
  37. def compose[G[_]](implicit G0: Apply[G]): Apply[[α]F[G[α]]]

    The composition of Applys F and G, [x]F[G[x]], is a Apply

    The composition of Applys F and G, [x]F[G[x]], is a Apply

    Definition Classes
    Apply
  38. def compose[G[_]](implicit G0: Functor[G]): Functor[[α]F[G[α]]]

    The composition of Functors F and G, [x]F[G[x]], is a Functor

    The composition of Functors F and G, [x]F[G[x]], is a Functor

    Definition Classes
    Functor
  39. def counzip[A, B](a: \/[F[A], F[B]]): F[\/[A, B]]
    Definition Classes
    Functor
  40. def discardLeft[A, B](fa: ⇒ F[A], fb: ⇒ F[B]): F[B]

    Combine fa and fb according to Apply[F] with a function that discards the A(s)

    Combine fa and fb according to Apply[F] with a function that discards the A(s)

    Definition Classes
    Apply
  41. def discardRight[A, B](fa: ⇒ F[A], fb: ⇒ F[B]): F[A]

    Combine fa and fb according to Apply[F] with a function that discards the B(s)

    Combine fa and fb according to Apply[F] with a function that discards the B(s)

    Definition Classes
    Apply
  42. final def eq(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  43. def equals(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  44. def filterM[A](l: IList[A])(f: (A) ⇒ F[Boolean]): F[IList[A]]

    Filter l according to an applicative predicate.

    Filter l according to an applicative predicate.

    Definition Classes
    Applicative
  45. def filterM[A](l: List[A])(f: (A) ⇒ F[Boolean]): F[List[A]]

    Filter l according to an applicative predicate.

    Filter l according to an applicative predicate.

    Definition Classes
    Applicative
  46. def finalize(): Unit
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  47. def flip: Applicative[F]

    An Applicative for F in which effects happen in the opposite order.

    An Applicative for F in which effects happen in the opposite order.

    Definition Classes
    ApplicativeApply
  48. def forever[A, B](fa: F[A]): F[B]

    Repeats an applicative action infinitely

    Repeats an applicative action infinitely

    Definition Classes
    Apply
  49. def fpair[A](fa: F[A]): F[(A, A)]

    Twin all As in fa.

    Twin all As in fa.

    Definition Classes
    Functor
  50. def fproduct[A, B](fa: F[A])(f: (A) ⇒ B): F[(A, B)]

    Pair all As in fa with the result of function application.

    Pair all As in fa with the result of function application.

    Definition Classes
    Functor
  51. def functorLaw: FunctorLaw
    Definition Classes
    Functor
  52. val functorSyntax: FunctorSyntax[F]
    Definition Classes
    Functor
  53. final def getClass(): Class[_]
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  54. def hashCode(): Int
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  55. def icompose[G[_]](implicit G0: Contravariant[G]): Contravariant[[α]F[G[α]]]

    The composition of Functor F and Contravariant G, [x]F[G[x]], is contravariant.

    The composition of Functor F and Contravariant G, [x]F[G[x]], is contravariant.

    Definition Classes
    Functor
  56. def ifM[B](value: F[Boolean], ifTrue: ⇒ F[B], ifFalse: ⇒ F[B]): F[B]

    if lifted into a binding.

    if lifted into a binding. Unlike lift3((t,c,a)=>if(t)c else a), this will only include context from the chosen of ifTrue and ifFalse, not the other.

    Definition Classes
    Bind
  57. def invariantFunctorLaw: InvariantFunctorLaw
    Definition Classes
    InvariantFunctor
  58. val invariantFunctorSyntax: InvariantFunctorSyntax[F]
    Definition Classes
    InvariantFunctor
  59. final def isInstanceOf[T0]: Boolean
    Definition Classes
    Any
  60. def iterateUntil[A](f: F[A])(p: (A) ⇒ Boolean): F[A]

    Execute an action repeatedly until its result satisfies the given predicate and return that result, discarding all others.

    Execute an action repeatedly until its result satisfies the given predicate and return that result, discarding all others.

    Definition Classes
    Monad
  61. def iterateWhile[A](f: F[A])(p: (A) ⇒ Boolean): F[A]

    Execute an action repeatedly until its result fails to satisfy the given predicate and return that result, discarding all others.

    Execute an action repeatedly until its result fails to satisfy the given predicate and return that result, discarding all others.

    Definition Classes
    Monad
  62. def join[A](ffa: F[F[A]]): F[A]

    Sequence the inner F of FFA after the outer F, forming a single F[A].

    Sequence the inner F of FFA after the outer F, forming a single F[A].

    Definition Classes
    Bind
  63. def lift[A, B](f: (A) ⇒ B): (F[A]) ⇒ F[B]

    Lift f into F.

    Lift f into F.

    Definition Classes
    Functor
  64. def lift10[A, B, C, D, E, FF, G, H, I, J, R](f: (A, B, C, D, E, FF, G, H, I, J) ⇒ R): (F[A], F[B], F[C], F[D], F[E], F[FF], F[G], F[H], F[I], F[J]) ⇒ F[R]
    Definition Classes
    Apply
  65. def lift11[A, B, C, D, E, FF, G, H, I, J, K, R](f: (A, B, C, D, E, FF, G, H, I, J, K) ⇒ R): (F[A], F[B], F[C], F[D], F[E], F[FF], F[G], F[H], F[I], F[J], F[K]) ⇒ F[R]
    Definition Classes
    Apply
  66. def lift12[A, B, C, D, E, FF, G, H, I, J, K, L, R](f: (A, B, C, D, E, FF, G, H, I, J, K, L) ⇒ R): (F[A], F[B], F[C], F[D], F[E], F[FF], F[G], F[H], F[I], F[J], F[K], F[L]) ⇒ F[R]
    Definition Classes
    Apply
  67. def lift2[A, B, C](f: (A, B) ⇒ C): (F[A], F[B]) ⇒ F[C]
    Definition Classes
    Apply
  68. def lift3[A, B, C, D](f: (A, B, C) ⇒ D): (F[A], F[B], F[C]) ⇒ F[D]
    Definition Classes
    Apply
  69. def lift4[A, B, C, D, E](f: (A, B, C, D) ⇒ E): (F[A], F[B], F[C], F[D]) ⇒ F[E]
    Definition Classes
    Apply
  70. def lift5[A, B, C, D, E, R](f: (A, B, C, D, E) ⇒ R): (F[A], F[B], F[C], F[D], F[E]) ⇒ F[R]
    Definition Classes
    Apply
  71. def lift6[A, B, C, D, E, FF, R](f: (A, B, C, D, E, FF) ⇒ R): (F[A], F[B], F[C], F[D], F[E], F[FF]) ⇒ F[R]
    Definition Classes
    Apply
  72. def lift7[A, B, C, D, E, FF, G, R](f: (A, B, C, D, E, FF, G) ⇒ R): (F[A], F[B], F[C], F[D], F[E], F[FF], F[G]) ⇒ F[R]
    Definition Classes
    Apply
  73. def lift8[A, B, C, D, E, FF, G, H, R](f: (A, B, C, D, E, FF, G, H) ⇒ R): (F[A], F[B], F[C], F[D], F[E], F[FF], F[G], F[H]) ⇒ F[R]
    Definition Classes
    Apply
  74. def lift9[A, B, C, D, E, FF, G, H, I, R](f: (A, B, C, D, E, FF, G, H, I) ⇒ R): (F[A], F[B], F[C], F[D], F[E], F[FF], F[G], F[H], F[I]) ⇒ F[R]
    Definition Classes
    Apply
  75. def liftIO[A](ioa: IO[A]): F[A]
    Definition Classes
    IsomorphismLiftIOLiftIO
  76. val liftIOSyntax: LiftIOSyntax[F]
    Definition Classes
    LiftIO
  77. def map[A, B](fa: F[A])(f: (A) ⇒ B): F[B]

    Lift f into F and apply to F[A].

    Lift f into F and apply to F[A].

    Definition Classes
    IsomorphismFunctorFunctor
  78. def mapply[A, B](a: A)(f: F[(A) ⇒ B]): F[B]

    Lift apply(a), and apply the result to f.

    Lift apply(a), and apply the result to f.

    Definition Classes
    Functor
  79. val monadIOSyntax: MonadIOSyntax[F]
    Definition Classes
    MonadIO
  80. def monadLaw: MonadLaw
    Definition Classes
    Monad
  81. val monadSyntax: MonadSyntax[F]
    Definition Classes
    Monad
  82. def mproduct[A, B](fa: F[A])(f: (A) ⇒ F[B]): F[(A, B)]

    Pair A with the result of function application.

    Pair A with the result of function application.

    Definition Classes
    Bind
  83. final def ne(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  84. final def notify(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  85. final def notifyAll(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  86. def point[A](a: ⇒ A): F[A]
    Definition Classes
    IsomorphismApplicativeApplicative
  87. def product[G[_]](implicit G0: Monad[G]): Monad[[α](F[α], G[α])]

    The product of Monad F and G, [x](F[x], G[x]]), is a Monad

    The product of Monad F and G, [x](F[x], G[x]]), is a Monad

    Definition Classes
    Monad
  88. def product[G[_]](implicit G0: Bind[G]): Bind[[α](F[α], G[α])]

    The product of Bind F and G, [x](F[x], G[x]]), is a Bind

    The product of Bind F and G, [x](F[x], G[x]]), is a Bind

    Definition Classes
    Bind
  89. def product[G[_]](implicit G0: Applicative[G]): Applicative[[α](F[α], G[α])]

    The product of Applicatives F and G, [x](F[x], G[x]]), is an Applicative

    The product of Applicatives F and G, [x](F[x], G[x]]), is an Applicative

    Definition Classes
    Applicative
  90. def product[G[_]](implicit G0: Apply[G]): Apply[[α](F[α], G[α])]

    The product of Applys F and G, [x](F[x], G[x]]), is a Apply

    The product of Applys F and G, [x](F[x], G[x]]), is a Apply

    Definition Classes
    Apply
  91. def product[G[_]](implicit G0: Functor[G]): Functor[[α](F[α], G[α])]

    The product of Functors F and G, [x](F[x], G[x]]), is a Functor

    The product of Functors F and G, [x](F[x], G[x]]), is a Functor

    Definition Classes
    Functor
  92. final def pure[A](a: ⇒ A): F[A]
    Definition Classes
    Applicative
  93. def replicateM[A](n: Int, fa: F[A]): F[IList[A]]

    Performs the action n times, returning the list of results.

    Performs the action n times, returning the list of results.

    Definition Classes
    Applicative
  94. def replicateM_[A](n: Int, fa: F[A]): F[Unit]

    Performs the action n times, returning nothing.

    Performs the action n times, returning nothing.

    Definition Classes
    Applicative
  95. def sequence[A, G[_]](as: G[F[A]])(implicit arg0: Traverse[G]): F[G[A]]
    Definition Classes
    Applicative
  96. def sequence1[A, G[_]](as: G[F[A]])(implicit arg0: Traverse1[G]): F[G[A]]
    Definition Classes
    Apply
  97. def strengthL[A, B](a: A, f: F[B]): F[(A, B)]

    Inject a to the left of Bs in f.

    Inject a to the left of Bs in f.

    Definition Classes
    Functor
  98. def strengthR[A, B](f: F[A], b: B): F[(A, B)]

    Inject b to the right of As in f.

    Inject b to the right of As in f.

    Definition Classes
    Functor
  99. final def synchronized[T0](arg0: ⇒ T0): T0
    Definition Classes
    AnyRef
  100. def toString(): String
    Definition Classes
    AnyRef → Any
  101. def traverse[A, G[_], B](value: G[A])(f: (A) ⇒ F[B])(implicit G: Traverse[G]): F[G[B]]
    Definition Classes
    Applicative
  102. def traverse1[A, G[_], B](value: G[A])(f: (A) ⇒ F[B])(implicit G: Traverse1[G]): F[G[B]]
    Definition Classes
    Apply
  103. def tuple2[A, B](fa: ⇒ F[A], fb: ⇒ F[B]): F[(A, B)]
    Definition Classes
    Apply
  104. def tuple3[A, B, C](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C]): F[(A, B, C)]
    Definition Classes
    Apply
  105. def tuple4[A, B, C, D](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D]): F[(A, B, C, D)]
    Definition Classes
    Apply
  106. def tuple5[A, B, C, D, E](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D], fe: ⇒ F[E]): F[(A, B, C, D, E)]
    Definition Classes
    Apply
  107. def unlessM[A](cond: Boolean)(f: ⇒ F[A]): F[Unit]

    Returns the given argument if cond is false, otherwise, unit lifted into F.

    Returns the given argument if cond is false, otherwise, unit lifted into F.

    Definition Classes
    Applicative
  108. def untilM[G[_], A](f: F[A], cond: ⇒ F[Boolean])(implicit G: MonadPlus[G]): F[G[A]]

    Execute an action repeatedly until the Boolean condition returns true.

    Execute an action repeatedly until the Boolean condition returns true. The condition is evaluated after the loop body. Collects results into an arbitrary MonadPlus value, such as a List.

    Definition Classes
    Monad
  109. def untilM_[A](f: F[A], cond: ⇒ F[Boolean]): F[Unit]

    Execute an action repeatedly until the Boolean condition returns true.

    Execute an action repeatedly until the Boolean condition returns true. The condition is evaluated after the loop body. Discards results.

    Definition Classes
    Monad
  110. def void[A](fa: F[A]): F[Unit]

    Empty fa of meaningful pure values, preserving its structure.

    Empty fa of meaningful pure values, preserving its structure.

    Definition Classes
    Functor
  111. final def wait(): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  112. final def wait(arg0: Long, arg1: Int): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  113. final def wait(arg0: Long): Unit
    Definition Classes
    AnyRef
    Annotations
    @native() @throws( ... )
  114. def whenM[A](cond: Boolean)(f: ⇒ F[A]): F[Unit]

    Returns the given argument if cond is true, otherwise, unit lifted into F.

    Returns the given argument if cond is true, otherwise, unit lifted into F.

    Definition Classes
    Applicative
  115. def whileM[G[_], A](p: F[Boolean], body: ⇒ F[A])(implicit G: MonadPlus[G]): F[G[A]]

    Execute an action repeatedly as long as the given Boolean expression returns true.

    Execute an action repeatedly as long as the given Boolean expression returns true. The condition is evalated before the loop body. Collects the results into an arbitrary MonadPlus value, such as a List.

    Definition Classes
    Monad
  116. def whileM_[A](p: F[Boolean], body: ⇒ F[A]): F[Unit]

    Execute an action repeatedly as long as the given Boolean expression returns true.

    Execute an action repeatedly as long as the given Boolean expression returns true. The condition is evaluated before the loop body. Discards results.

    Definition Classes
    Monad
  117. def widen[A, B](fa: F[A])(implicit ev: <~<[A, B]): F[B]

    Functors are covariant by nature, so we can treat an F[A] as an F[B] if A is a subtype of B.

    Functors are covariant by nature, so we can treat an F[A] as an F[B] if A is a subtype of B.

    Definition Classes
    Functor
  118. def xmap[A, B](fa: F[A], f: (A) ⇒ B, g: (B) ⇒ A): F[B]

    Converts ma to a value of type F[B] using the provided functions f and g.

    Converts ma to a value of type F[B] using the provided functions f and g.

    Definition Classes
    FunctorInvariantFunctor
  119. def xmapb[A, B](ma: F[A])(b: Bijection[A, B]): F[B]

    Converts ma to a value of type F[B] using the provided bijection.

    Converts ma to a value of type F[B] using the provided bijection.

    Definition Classes
    InvariantFunctor
  120. def xmapi[A, B](ma: F[A])(iso: Isomorphism.<=>[A, B]): F[B]

    Converts ma to a value of type F[B] using the provided isomorphism.

    Converts ma to a value of type F[B] using the provided isomorphism.

    Definition Classes
    InvariantFunctor

Inherited from IsomorphismMonad[F, G]

Inherited from IsomorphismBind[F, G]

Inherited from IsomorphismApplicative[F, G]

Inherited from IsomorphismApply[F, G]

Inherited from IsomorphismFunctor[F, G]

Inherited from IsomorphismLiftIO[F, G]

Inherited from MonadIO[F]

Inherited from Monad[F]

Inherited from Bind[F]

Inherited from Applicative[F]

Inherited from Apply[F]

Inherited from Functor[F]

Inherited from InvariantFunctor[F]

Inherited from LiftIO[F]

Inherited from AnyRef

Inherited from Any

Ungrouped