Packages

trait CovariantDerives[F[_]] extends Derives[F] with Coapplicative[F] with Applicative[F]

Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. CovariantDerives
  2. Applicative
  3. Apply
  4. Functor
  5. Coapplicative
  6. Derives
  7. ApplicativeDivisible
  8. ApplyDivide
  9. InvariantFunctor
  10. CoapplicativeCodivide
  11. AnyRef
  12. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Type Members

  1. trait ApplicativeLaw extends ApplyLaw
    Definition Classes
    Applicative
  2. trait ApplyLaw extends FunctorLaw
    Definition Classes
    Apply
  3. trait FlippedApply extends Apply[F]
    Attributes
    protected[this]
    Definition Classes
    Apply
  4. trait FunctorLaw extends InvariantFunctorLaw
    Definition Classes
    Functor
  5. trait InvariantFunctorLaw extends AnyRef
    Definition Classes
    InvariantFunctor

Abstract Value Members

  1. abstract def ap[A, B](fa: ⇒ F[A])(f: ⇒ F[(A) ⇒ B]): F[B]

    Sequence f, then fa, combining their results by function application.

    Sequence f, then fa, combining their results by function application.

    NB: with respect to apply2 and all other combinators, as well as scalaz.Bind, the f action appears to the *left*. So f should be the "first" F-action to perform. This is in accordance with all other implementations of this typeclass in common use, which are "function first".

    Definition Classes
    Apply
  2. abstract def coapply1[Z, A1](a1: ⇒ F[A1])(f: (A1) ⇒ Z): F[Z]
    Definition Classes
    Coapplicative
  3. abstract def coapply2[Z, A1, A2](a1: ⇒ F[A1], a2: ⇒ F[A2])(f: (\/[A1, A2]) ⇒ Z): F[Z]
    Definition Classes
    Coapplicative
  4. abstract def point[A](a: ⇒ A): F[A]
    Definition Classes
    Applicative

Concrete Value Members

  1. final def !=(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  4. def ap2[A, B, C](fa: ⇒ F[A], fb: ⇒ F[B])(f: F[(A, B) ⇒ C]): F[C]
    Definition Classes
    Apply
  5. def ap3[A, B, C, D](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C])(f: F[(A, B, C) ⇒ D]): F[D]
    Definition Classes
    Apply
  6. def ap4[A, B, C, D, E](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D])(f: F[(A, B, C, D) ⇒ E]): F[E]
    Definition Classes
    Apply
  7. def ap5[A, B, C, D, E, R](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D], fe: ⇒ F[E])(f: F[(A, B, C, D, E) ⇒ R]): F[R]
    Definition Classes
    Apply
  8. def ap6[A, B, C, D, E, FF, R](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D], fe: ⇒ F[E], ff: ⇒ F[FF])(f: F[(A, B, C, D, E, FF) ⇒ R]): F[R]
    Definition Classes
    Apply
  9. def ap7[A, B, C, D, E, FF, G, R](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D], fe: ⇒ F[E], ff: ⇒ F[FF], fg: ⇒ F[G])(f: F[(A, B, C, D, E, FF, G) ⇒ R]): F[R]
    Definition Classes
    Apply
  10. def ap8[A, B, C, D, E, FF, G, H, R](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D], fe: ⇒ F[E], ff: ⇒ F[FF], fg: ⇒ F[G], fh: ⇒ F[H])(f: F[(A, B, C, D, E, FF, G, H) ⇒ R]): F[R]
    Definition Classes
    Apply
  11. def apF[A, B](f: ⇒ F[(A) ⇒ B]): (F[A]) ⇒ F[B]

    Flipped variant of ap.

    Flipped variant of ap.

    Definition Classes
    Apply
  12. val applicativeDivisibleSyntax: ApplicativeDivisibleSyntax[F]
    Definition Classes
    ApplicativeDivisible
  13. def applicativeLaw: ApplicativeLaw
    Definition Classes
    Applicative
  14. val applicativeSyntax: ApplicativeSyntax[F]
    Definition Classes
    Applicative
  15. def apply[A, B](fa: F[A])(f: (A) ⇒ B): F[B]

    Alias for map.

    Alias for map.

    Definition Classes
    Functor
  16. def apply10[A, B, C, D, E, FF, G, H, I, J, R](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D], fe: ⇒ F[E], ff: ⇒ F[FF], fg: ⇒ F[G], fh: ⇒ F[H], fi: ⇒ F[I], fj: ⇒ F[J])(f: (A, B, C, D, E, FF, G, H, I, J) ⇒ R): F[R]
    Definition Classes
    Apply
  17. def apply11[A, B, C, D, E, FF, G, H, I, J, K, R](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D], fe: ⇒ F[E], ff: ⇒ F[FF], fg: ⇒ F[G], fh: ⇒ F[H], fi: ⇒ F[I], fj: ⇒ F[J], fk: ⇒ F[K])(f: (A, B, C, D, E, FF, G, H, I, J, K) ⇒ R): F[R]
    Definition Classes
    Apply
  18. def apply12[A, B, C, D, E, FF, G, H, I, J, K, L, R](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D], fe: ⇒ F[E], ff: ⇒ F[FF], fg: ⇒ F[G], fh: ⇒ F[H], fi: ⇒ F[I], fj: ⇒ F[J], fk: ⇒ F[K], fl: ⇒ F[L])(f: (A, B, C, D, E, FF, G, H, I, J, K, L) ⇒ R): F[R]
    Definition Classes
    Apply
  19. def apply2[A, B, C](fa: ⇒ F[A], fb: ⇒ F[B])(f: (A, B) ⇒ C): F[C]
    Definition Classes
    ApplicativeApply
  20. def apply3[A, B, C, D](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C])(f: (A, B, C) ⇒ D): F[D]
    Definition Classes
    Apply
  21. def apply4[A, B, C, D, E](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D])(f: (A, B, C, D) ⇒ E): F[E]
    Definition Classes
    Apply
  22. def apply5[A, B, C, D, E, R](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D], fe: ⇒ F[E])(f: (A, B, C, D, E) ⇒ R): F[R]
    Definition Classes
    Apply
  23. def apply6[A, B, C, D, E, FF, R](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D], fe: ⇒ F[E], ff: ⇒ F[FF])(f: (A, B, C, D, E, FF) ⇒ R): F[R]
    Definition Classes
    Apply
  24. def apply7[A, B, C, D, E, FF, G, R](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D], fe: ⇒ F[E], ff: ⇒ F[FF], fg: ⇒ F[G])(f: (A, B, C, D, E, FF, G) ⇒ R): F[R]
    Definition Classes
    Apply
  25. def apply8[A, B, C, D, E, FF, G, H, R](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D], fe: ⇒ F[E], ff: ⇒ F[FF], fg: ⇒ F[G], fh: ⇒ F[H])(f: (A, B, C, D, E, FF, G, H) ⇒ R): F[R]
    Definition Classes
    Apply
  26. def apply9[A, B, C, D, E, FF, G, H, I, R](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D], fe: ⇒ F[E], ff: ⇒ F[FF], fg: ⇒ F[G], fh: ⇒ F[H], fi: ⇒ F[I])(f: (A, B, C, D, E, FF, G, H, I) ⇒ R): F[R]
    Definition Classes
    Apply
  27. def applyApplicative: Applicative[[α]\/[F[α], α]]

    Add a unit to any Apply to form an Applicative.

    Add a unit to any Apply to form an Applicative.

    Definition Classes
    Apply
  28. val applyDivideSyntax: ApplyDivideSyntax[F]
    Definition Classes
    ApplyDivide
  29. def applyLaw: ApplyLaw
    Definition Classes
    Apply
  30. val applySyntax: ApplySyntax[F]
    Definition Classes
    Apply
  31. final def applying1[Z, A1](f: (A1) ⇒ Z)(implicit a1: F[A1]): F[Z]
    Definition Classes
    Apply
  32. final def applying2[Z, A1, A2](f: (A1, A2) ⇒ Z)(implicit a1: F[A1], a2: F[A2]): F[Z]
    Definition Classes
    Apply
  33. final def applying3[Z, A1, A2, A3](f: (A1, A2, A3) ⇒ Z)(implicit a1: F[A1], a2: F[A2], a3: F[A3]): F[Z]
    Definition Classes
    Apply
  34. final def applying4[Z, A1, A2, A3, A4](f: (A1, A2, A3, A4) ⇒ Z)(implicit a1: F[A1], a2: F[A2], a3: F[A3], a4: F[A4]): F[Z]
    Definition Classes
    Apply
  35. final def asInstanceOf[T0]: T0
    Definition Classes
    Any
  36. def bicompose[G[_, _]](implicit arg0: Bifunctor[G]): Bifunctor[[α, β]F[G[α, β]]]

    The composition of Functor F and Bifunctor G, [x, y]F[G[x, y]], is a Bifunctor

    The composition of Functor F and Bifunctor G, [x, y]F[G[x, y]], is a Bifunctor

    Definition Classes
    Functor
  37. def clone(): AnyRef
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @native() @throws( ... )
  38. val coapplicativeCodivideSyntax: CoapplicativeCodivideSyntax[F]
    Definition Classes
    CoapplicativeCodivide
  39. val coapplicativeSyntax: CoapplicativeSyntax[F]
    Definition Classes
    Coapplicative
  40. def coapply3[Z, A1, A2, A3](a1: ⇒ F[A1], a2: ⇒ F[A2], a3: ⇒ F[A3])(f: (\/[A1, \/[A2, A3]]) ⇒ Z): F[Z]
    Definition Classes
    Coapplicative
  41. def coapply4[Z, A1, A2, A3, A4](a1: ⇒ F[A1], a2: ⇒ F[A2], a3: ⇒ F[A3], a4: ⇒ F[A4])(f: (\/[A1, \/[A2, \/[A3, A4]]]) ⇒ Z): F[Z]
    Definition Classes
    Coapplicative
  42. final def coapplying1[Z, A1](f: (A1) ⇒ Z)(implicit a1: F[A1]): F[Z]
    Definition Classes
    Coapplicative
  43. final def coapplying2[Z, A1, A2](f: (\/[A1, A2]) ⇒ Z)(implicit a1: F[A1], a2: F[A2]): F[Z]
    Definition Classes
    Coapplicative
  44. final def coapplying3[Z, A1, A2, A3](f: (\/[A1, \/[A2, A3]]) ⇒ Z)(implicit a1: F[A1], a2: F[A2], a3: F[A3]): F[Z]
    Definition Classes
    Coapplicative
  45. final def coapplying4[Z, A1, A2, A3, A4](f: (\/[A1, \/[A2, \/[A3, A4]]]) ⇒ Z)(implicit a1: F[A1], a2: F[A2], a3: F[A3], a4: F[A4]): F[Z]
    Definition Classes
    Coapplicative
  46. def compose[G[_]](implicit G0: Applicative[G]): Applicative[[α]F[G[α]]]

    The composition of Applicatives F and G, [x]F[G[x]], is an Applicative

    The composition of Applicatives F and G, [x]F[G[x]], is an Applicative

    Definition Classes
    Applicative
  47. def compose[G[_]](implicit G0: Apply[G]): Apply[[α]F[G[α]]]

    The composition of Applys F and G, [x]F[G[x]], is a Apply

    The composition of Applys F and G, [x]F[G[x]], is a Apply

    Definition Classes
    Apply
  48. def compose[G[_]](implicit G0: Functor[G]): Functor[[α]F[G[α]]]

    The composition of Functors F and G, [x]F[G[x]], is a Functor

    The composition of Functors F and G, [x]F[G[x]], is a Functor

    Definition Classes
    Functor
  49. def counzip[A, B](a: \/[F[A], F[B]]): F[\/[A, B]]
    Definition Classes
    Functor
  50. val covariantDerivesSyntax: CovariantDerivesSyntax[F]
  51. val derivesSyntax: DerivesSyntax[F]
    Definition Classes
    Derives
  52. def discardLeft[A, B](fa: ⇒ F[A], fb: ⇒ F[B]): F[B]

    Combine fa and fb according to Apply[F] with a function that discards the A(s)

    Combine fa and fb according to Apply[F] with a function that discards the A(s)

    Definition Classes
    Apply
  53. def discardRight[A, B](fa: ⇒ F[A], fb: ⇒ F[B]): F[A]

    Combine fa and fb according to Apply[F] with a function that discards the B(s)

    Combine fa and fb according to Apply[F] with a function that discards the B(s)

    Definition Classes
    Apply
  54. def either2[A1, A2](a1: ⇒ F[A1], a2: ⇒ F[A2]): F[\/[A1, A2]]
    Definition Classes
    Coapplicative
  55. final def eq(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  56. def equals(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  57. def filterM[A](l: IList[A])(f: (A) ⇒ F[Boolean]): F[IList[A]]

    Filter l according to an applicative predicate.

    Filter l according to an applicative predicate.

    Definition Classes
    Applicative
  58. def filterM[A](l: List[A])(f: (A) ⇒ F[Boolean]): F[List[A]]

    Filter l according to an applicative predicate.

    Filter l according to an applicative predicate.

    Definition Classes
    Applicative
  59. def finalize(): Unit
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  60. def flip: Applicative[F]

    An Applicative for F in which effects happen in the opposite order.

    An Applicative for F in which effects happen in the opposite order.

    Definition Classes
    ApplicativeApply
  61. def forever[A, B](fa: F[A]): F[B]

    Repeats an applicative action infinitely

    Repeats an applicative action infinitely

    Definition Classes
    Apply
  62. def fpair[A](fa: F[A]): F[(A, A)]

    Twin all As in fa.

    Twin all As in fa.

    Definition Classes
    Functor
  63. def fproduct[A, B](fa: F[A])(f: (A) ⇒ B): F[(A, B)]

    Pair all As in fa with the result of function application.

    Pair all As in fa with the result of function application.

    Definition Classes
    Functor
  64. def functorLaw: FunctorLaw
    Definition Classes
    Functor
  65. val functorSyntax: FunctorSyntax[F]
    Definition Classes
    Functor
  66. final def getClass(): Class[_]
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  67. def hashCode(): Int
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  68. def icompose[G[_]](implicit G0: Contravariant[G]): Contravariant[[α]F[G[α]]]

    The composition of Functor F and Contravariant G, [x]F[G[x]], is contravariant.

    The composition of Functor F and Contravariant G, [x]F[G[x]], is contravariant.

    Definition Classes
    Functor
  69. def invariantFunctorLaw: InvariantFunctorLaw
    Definition Classes
    InvariantFunctor
  70. val invariantFunctorSyntax: InvariantFunctorSyntax[F]
    Definition Classes
    InvariantFunctor
  71. final def isInstanceOf[T0]: Boolean
    Definition Classes
    Any
  72. def lift[A, B](f: (A) ⇒ B): (F[A]) ⇒ F[B]

    Lift f into F.

    Lift f into F.

    Definition Classes
    Functor
  73. def lift10[A, B, C, D, E, FF, G, H, I, J, R](f: (A, B, C, D, E, FF, G, H, I, J) ⇒ R): (F[A], F[B], F[C], F[D], F[E], F[FF], F[G], F[H], F[I], F[J]) ⇒ F[R]
    Definition Classes
    Apply
  74. def lift11[A, B, C, D, E, FF, G, H, I, J, K, R](f: (A, B, C, D, E, FF, G, H, I, J, K) ⇒ R): (F[A], F[B], F[C], F[D], F[E], F[FF], F[G], F[H], F[I], F[J], F[K]) ⇒ F[R]
    Definition Classes
    Apply
  75. def lift12[A, B, C, D, E, FF, G, H, I, J, K, L, R](f: (A, B, C, D, E, FF, G, H, I, J, K, L) ⇒ R): (F[A], F[B], F[C], F[D], F[E], F[FF], F[G], F[H], F[I], F[J], F[K], F[L]) ⇒ F[R]
    Definition Classes
    Apply
  76. def lift2[A, B, C](f: (A, B) ⇒ C): (F[A], F[B]) ⇒ F[C]
    Definition Classes
    Apply
  77. def lift3[A, B, C, D](f: (A, B, C) ⇒ D): (F[A], F[B], F[C]) ⇒ F[D]
    Definition Classes
    Apply
  78. def lift4[A, B, C, D, E](f: (A, B, C, D) ⇒ E): (F[A], F[B], F[C], F[D]) ⇒ F[E]
    Definition Classes
    Apply
  79. def lift5[A, B, C, D, E, R](f: (A, B, C, D, E) ⇒ R): (F[A], F[B], F[C], F[D], F[E]) ⇒ F[R]
    Definition Classes
    Apply
  80. def lift6[A, B, C, D, E, FF, R](f: (A, B, C, D, E, FF) ⇒ R): (F[A], F[B], F[C], F[D], F[E], F[FF]) ⇒ F[R]
    Definition Classes
    Apply
  81. def lift7[A, B, C, D, E, FF, G, R](f: (A, B, C, D, E, FF, G) ⇒ R): (F[A], F[B], F[C], F[D], F[E], F[FF], F[G]) ⇒ F[R]
    Definition Classes
    Apply
  82. def lift8[A, B, C, D, E, FF, G, H, R](f: (A, B, C, D, E, FF, G, H) ⇒ R): (F[A], F[B], F[C], F[D], F[E], F[FF], F[G], F[H]) ⇒ F[R]
    Definition Classes
    Apply
  83. def lift9[A, B, C, D, E, FF, G, H, I, R](f: (A, B, C, D, E, FF, G, H, I) ⇒ R): (F[A], F[B], F[C], F[D], F[E], F[FF], F[G], F[H], F[I]) ⇒ F[R]
    Definition Classes
    Apply
  84. def liftReducer[A, B](implicit r: Reducer[A, B]): Reducer[F[A], F[B]]
    Definition Classes
    Apply
  85. def map[A, B](fa: F[A])(f: (A) ⇒ B): F[B]

    Lift f into F and apply to F[A].

    Lift f into F and apply to F[A].

    Definition Classes
    ApplicativeFunctor
  86. def mapply[A, B](a: A)(f: F[(A) ⇒ B]): F[B]

    Lift apply(a), and apply the result to f.

    Lift apply(a), and apply the result to f.

    Definition Classes
    Functor
  87. final def ne(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  88. final def notify(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  89. final def notifyAll(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  90. def product[G[_]](implicit G0: Applicative[G]): Applicative[[α](F[α], G[α])]

    The product of Applicatives F and G, [x](F[x], G[x]]), is an Applicative

    The product of Applicatives F and G, [x](F[x], G[x]]), is an Applicative

    Definition Classes
    Applicative
  91. def product[G[_]](implicit G0: Apply[G]): Apply[[α](F[α], G[α])]

    The product of Applys F and G, [x](F[x], G[x]]), is a Apply

    The product of Applys F and G, [x](F[x], G[x]]), is a Apply

    Definition Classes
    Apply
  92. def product[G[_]](implicit G0: Functor[G]): Functor[[α](F[α], G[α])]

    The product of Functors F and G, [x](F[x], G[x]]), is a Functor

    The product of Functors F and G, [x](F[x], G[x]]), is a Functor

    Definition Classes
    Functor
  93. final def pure[A](a: ⇒ A): F[A]
    Definition Classes
    Applicative
  94. def replicateM[A](n: Int, fa: F[A]): F[IList[A]]

    Performs the action n times, returning the list of results.

    Performs the action n times, returning the list of results.

    Definition Classes
    Applicative
  95. def replicateM_[A](n: Int, fa: F[A]): F[Unit]

    Performs the action n times, returning nothing.

    Performs the action n times, returning nothing.

    Definition Classes
    Applicative
  96. def sequence[A, G[_]](as: G[F[A]])(implicit arg0: Traverse[G]): F[G[A]]
    Definition Classes
    Applicative
  97. def sequence1[A, G[_]](as: G[F[A]])(implicit arg0: Traverse1[G]): F[G[A]]
    Definition Classes
    Apply
  98. def strengthL[A, B](a: A, f: F[B]): F[(A, B)]

    Inject a to the left of Bs in f.

    Inject a to the left of Bs in f.

    Definition Classes
    Functor
  99. def strengthR[A, B](f: F[A], b: B): F[(A, B)]

    Inject b to the right of As in f.

    Inject b to the right of As in f.

    Definition Classes
    Functor
  100. final def synchronized[T0](arg0: ⇒ T0): T0
    Definition Classes
    AnyRef
  101. def toString(): String
    Definition Classes
    AnyRef → Any
  102. def traverse[A, G[_], B](value: G[A])(f: (A) ⇒ F[B])(implicit G: Traverse[G]): F[G[B]]
    Definition Classes
    Applicative
  103. def traverse1[A, G[_], B](value: G[A])(f: (A) ⇒ F[B])(implicit G: Traverse1[G]): F[G[B]]
    Definition Classes
    Apply
  104. def tuple2[A, B](fa: ⇒ F[A], fb: ⇒ F[B]): F[(A, B)]
    Definition Classes
    Apply
  105. def tuple3[A, B, C](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C]): F[(A, B, C)]
    Definition Classes
    Apply
  106. def tuple4[A, B, C, D](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D]): F[(A, B, C, D)]
    Definition Classes
    Apply
  107. def tuple5[A, B, C, D, E](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D], fe: ⇒ F[E]): F[(A, B, C, D, E)]
    Definition Classes
    Apply
  108. def unfoldrOpt[S, A, B](seed: S)(f: (S) ⇒ Maybe[(F[A], S)])(implicit R: Reducer[A, B]): Maybe[F[B]]

    Unfold seed to the right and combine effects left-to-right, using the given Reducer to combine values.

    Unfold seed to the right and combine effects left-to-right, using the given Reducer to combine values. Implementations may override this method to not unfold more than is necessary to determine the result.

    Definition Classes
    Apply
  109. def unlessM[A](cond: Boolean)(f: ⇒ F[A]): F[Unit]

    Returns the given argument if cond is false, otherwise, unit lifted into F.

    Returns the given argument if cond is false, otherwise, unit lifted into F.

    Definition Classes
    Applicative
  110. def void[A](fa: F[A]): F[Unit]

    Empty fa of meaningful pure values, preserving its structure.

    Empty fa of meaningful pure values, preserving its structure.

    Definition Classes
    Functor
  111. final def wait(): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  112. final def wait(arg0: Long, arg1: Int): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  113. final def wait(arg0: Long): Unit
    Definition Classes
    AnyRef
    Annotations
    @native() @throws( ... )
  114. def whenM[A](cond: Boolean)(f: ⇒ F[A]): F[Unit]

    Returns the given argument if cond is true, otherwise, unit lifted into F.

    Returns the given argument if cond is true, otherwise, unit lifted into F.

    Definition Classes
    Applicative
  115. def widen[A, B](fa: F[A])(implicit ev: <~<[A, B]): F[B]

    Functors are covariant by nature, so we can treat an F[A] as an F[B] if A is a subtype of B.

    Functors are covariant by nature, so we can treat an F[A] as an F[B] if A is a subtype of B.

    Definition Classes
    Functor
  116. def xcoderiving1[Z, A1](f: (A1) ⇒ Z, g: (Z) ⇒ A1)(implicit a1: F[A1]): F[Z]
    Definition Classes
    CoapplicativeCodivide
  117. def xcoderiving2[Z, A1, A2](f: (\/[A1, A2]) ⇒ Z, g: (Z) ⇒ \/[A1, A2])(implicit a1: F[A1], a2: F[A2]): F[Z]
    Definition Classes
    CoapplicativeCodivide
  118. def xcoderiving3[Z, A1, A2, A3](f: (\/[A1, \/[A2, A3]]) ⇒ Z, g: (Z) ⇒ \/[A1, \/[A2, A3]])(implicit a1: F[A1], a2: F[A2], a3: F[A3]): F[Z]
    Definition Classes
    CoapplicativeCodivide
  119. def xcoderiving4[Z, A1, A2, A3, A4](f: (\/[A1, \/[A2, \/[A3, A4]]]) ⇒ Z, g: (Z) ⇒ \/[A1, \/[A2, \/[A3, A4]]])(implicit a1: F[A1], a2: F[A2], a3: F[A3], a4: F[A4]): F[Z]
    Definition Classes
    CoapplicativeCodivide
  120. def xcoproduct1[Z, A1](a1: ⇒ F[A1])(f: (A1) ⇒ Z, g: (Z) ⇒ A1): F[Z]
    Definition Classes
    CoapplicativeCoapplicativeCodivide
  121. def xcoproduct2[Z, A1, A2](a1: ⇒ F[A1], a2: ⇒ F[A2])(f: (\/[A1, A2]) ⇒ Z, g: (Z) ⇒ \/[A1, A2]): F[Z]
    Definition Classes
    CoapplicativeCoapplicativeCodivide
  122. def xcoproduct3[Z, A1, A2, A3](a1: ⇒ F[A1], a2: ⇒ F[A2], a3: ⇒ F[A3])(f: (\/[A1, \/[A2, A3]]) ⇒ Z, g: (Z) ⇒ \/[A1, \/[A2, A3]]): F[Z]
    Definition Classes
    CoapplicativeCoapplicativeCodivide
  123. def xcoproduct4[Z, A1, A2, A3, A4](a1: ⇒ F[A1], a2: ⇒ F[A2], a3: ⇒ F[A3], a4: ⇒ F[A4])(f: (\/[A1, \/[A2, \/[A3, A4]]]) ⇒ Z, g: (Z) ⇒ \/[A1, \/[A2, \/[A3, A4]]]): F[Z]
    Definition Classes
    CoapplicativeCoapplicativeCodivide
  124. final def xderiving0[Z](z: Z): F[Z]
    Definition Classes
    ApplicativeDivisible
  125. final def xderiving1[Z, A1](f: (A1) ⇒ Z, g: (Z) ⇒ A1)(implicit a1: F[A1]): F[Z]
    Definition Classes
    ApplyDivide
  126. final def xderiving2[Z, A1, A2](f: (A1, A2) ⇒ Z, g: (Z) ⇒ (A1, A2))(implicit a1: F[A1], a2: F[A2]): F[Z]
    Definition Classes
    ApplyDivide
  127. final def xderiving3[Z, A1, A2, A3](f: (A1, A2, A3) ⇒ Z, g: (Z) ⇒ (A1, A2, A3))(implicit a1: F[A1], a2: F[A2], a3: F[A3]): F[Z]
    Definition Classes
    ApplyDivide
  128. final def xderiving4[Z, A1, A2, A3, A4](f: (A1, A2, A3, A4) ⇒ Z, g: (Z) ⇒ (A1, A2, A3, A4))(implicit a1: F[A1], a2: F[A2], a3: F[A3], a4: F[A4]): F[Z]
    Definition Classes
    ApplyDivide
  129. def xmap[A, B](fa: F[A], f: (A) ⇒ B, g: (B) ⇒ A): F[B]

    Converts ma to a value of type F[B] using the provided functions f and g.

    Converts ma to a value of type F[B] using the provided functions f and g.

    Definition Classes
    FunctorInvariantFunctor
  130. def xmapb[A, B](ma: F[A])(b: Bijection[A, B]): F[B]

    Converts ma to a value of type F[B] using the provided bijection.

    Converts ma to a value of type F[B] using the provided bijection.

    Definition Classes
    InvariantFunctor
  131. def xmapi[A, B](ma: F[A])(iso: Isomorphism.<=>[A, B]): F[B]

    Converts ma to a value of type F[B] using the provided isomorphism.

    Converts ma to a value of type F[B] using the provided isomorphism.

    Definition Classes
    InvariantFunctor
  132. def xproduct0[Z](z: ⇒ Z): F[Z]
    Definition Classes
    ApplicativeApplicativeDivisible
  133. def xproduct1[Z, A1](a1: F[A1])(f: (A1) ⇒ Z, g: (Z) ⇒ A1): F[Z]
    Definition Classes
    ApplyDivide
  134. def xproduct2[Z, A1, A2](a1: ⇒ F[A1], a2: ⇒ F[A2])(f: (A1, A2) ⇒ Z, g: (Z) ⇒ (A1, A2)): F[Z]
    Definition Classes
    ApplyApplyDivide
  135. def xproduct3[Z, A1, A2, A3](a1: ⇒ F[A1], a2: ⇒ F[A2], a3: ⇒ F[A3])(f: (A1, A2, A3) ⇒ Z, g: (Z) ⇒ (A1, A2, A3)): F[Z]
    Definition Classes
    ApplyApplyDivide
  136. def xproduct4[Z, A1, A2, A3, A4](a1: ⇒ F[A1], a2: ⇒ F[A2], a3: ⇒ F[A3], a4: ⇒ F[A4])(f: (A1, A2, A3, A4) ⇒ Z, g: (Z) ⇒ (A1, A2, A3, A4)): F[Z]
    Definition Classes
    ApplyApplyDivide

Inherited from Applicative[F]

Inherited from Apply[F]

Inherited from Functor[F]

Inherited from Coapplicative[F]

Inherited from Derives[F]

Inherited from ApplicativeDivisible[F]

Inherited from ApplyDivide[F]

Inherited from InvariantFunctor[F]

Inherited from CoapplicativeCodivide[F]

Inherited from AnyRef

Inherited from Any

Ungrouped