Packages

t

scalaz

IsomorphismNondeterminism

trait IsomorphismNondeterminism[F[_], G[_]] extends Nondeterminism[F] with IsomorphismMonad[F, G]

Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. IsomorphismNondeterminism
  2. IsomorphismMonad
  3. IsomorphismBind
  4. IsomorphismApplicative
  5. IsomorphismInvariantApplicative
  6. IsomorphismApply
  7. IsomorphismFunctor
  8. IsomorphismInvariantFunctor
  9. Nondeterminism
  10. Monad
  11. Bind
  12. Applicative
  13. InvariantApplicative
  14. Apply
  15. Functor
  16. InvariantFunctor
  17. AnyRef
  18. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Type Members

  1. trait ApplicativeLaw extends ApplyLaw
    Definition Classes
    Applicative
  2. trait ApplyLaw extends FunctorLaw
    Definition Classes
    Apply
  3. trait FlippedApply extends Apply[F]
    Attributes
    protected[this]
    Definition Classes
    Apply
  4. trait BindLaw extends ApplyLaw
    Definition Classes
    Bind
  5. trait FunctorLaw extends InvariantFunctorLaw
    Definition Classes
    Functor
  6. trait InvariantFunctorLaw extends AnyRef
    Definition Classes
    InvariantFunctor
  7. trait MonadLaw extends ApplicativeLaw with BindLaw
    Definition Classes
    Monad

Concrete Value Members

  1. final def !=(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  4. def aggregate[A](fs: IList[F[A]])(implicit arg0: Monoid[A]): F[A]

    Nondeterministically sequence fs, collecting the results using a Monoid.

    Nondeterministically sequence fs, collecting the results using a Monoid.

    Definition Classes
    Nondeterminism
  5. def aggregate1[A](fs: NonEmptyList[F[A]])(implicit arg0: Semigroup[A]): F[A]
    Definition Classes
    Nondeterminism
  6. def aggregateCommutative[A](fs: IList[F[A]])(implicit arg0: Monoid[A]): F[A]

    Nondeterministically sequence fs, collecting the results using a commutative Monoid.

    Nondeterministically sequence fs, collecting the results using a commutative Monoid.

    Definition Classes
    Nondeterminism
  7. def aggregateCommutative1[A](fs: NonEmptyList[F[A]])(implicit arg0: Semigroup[A]): F[A]
    Definition Classes
    Nondeterminism
  8. def ap[A, B](fa: ⇒ F[A])(f: ⇒ F[(A) ⇒ B]): F[B]

    Sequence f, then fa, combining their results by function application.

    Sequence f, then fa, combining their results by function application.

    NB: with respect to apply2 and all other combinators, as well as scalaz.Bind, the f action appears to the *left*. So f should be the "first" F-action to perform. This is in accordance with all other implementations of this typeclass in common use, which are "function first".

    Definition Classes
    IsomorphismApplicativeIsomorphismApplyApply
  9. def ap2[A, B, C](fa: ⇒ F[A], fb: ⇒ F[B])(f: F[(A, B) ⇒ C]): F[C]
    Definition Classes
    Apply
  10. def ap3[A, B, C, D](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C])(f: F[(A, B, C) ⇒ D]): F[D]
    Definition Classes
    Apply
  11. def ap4[A, B, C, D, E](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D])(f: F[(A, B, C, D) ⇒ E]): F[E]
    Definition Classes
    Apply
  12. def ap5[A, B, C, D, E, R](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D], fe: ⇒ F[E])(f: F[(A, B, C, D, E) ⇒ R]): F[R]
    Definition Classes
    Apply
  13. def ap6[A, B, C, D, E, FF, R](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D], fe: ⇒ F[E], ff: ⇒ F[FF])(f: F[(A, B, C, D, E, FF) ⇒ R]): F[R]
    Definition Classes
    Apply
  14. def ap7[A, B, C, D, E, FF, G, R](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D], fe: ⇒ F[E], ff: ⇒ F[FF], fg: ⇒ F[G])(f: F[(A, B, C, D, E, FF, G) ⇒ R]): F[R]
    Definition Classes
    Apply
  15. def ap8[A, B, C, D, E, FF, G, H, R](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D], fe: ⇒ F[E], ff: ⇒ F[FF], fg: ⇒ F[G], fh: ⇒ F[H])(f: F[(A, B, C, D, E, FF, G, H) ⇒ R]): F[R]
    Definition Classes
    Apply
  16. def apF[A, B](f: ⇒ F[(A) ⇒ B]): (F[A]) ⇒ F[B]

    Flipped variant of ap.

    Flipped variant of ap.

    Definition Classes
    Apply
  17. def applicativeLaw: ApplicativeLaw
    Definition Classes
    Applicative
  18. val applicativeSyntax: ApplicativeSyntax[F]
    Definition Classes
    Applicative
  19. def apply[A, B](fa: F[A])(f: (A) ⇒ B): F[B]

    Alias for map.

    Alias for map.

    Definition Classes
    Functor
  20. def apply10[A, B, C, D, E, FF, G, H, I, J, R](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D], fe: ⇒ F[E], ff: ⇒ F[FF], fg: ⇒ F[G], fh: ⇒ F[H], fi: ⇒ F[I], fj: ⇒ F[J])(f: (A, B, C, D, E, FF, G, H, I, J) ⇒ R): F[R]
    Definition Classes
    Apply
  21. def apply11[A, B, C, D, E, FF, G, H, I, J, K, R](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D], fe: ⇒ F[E], ff: ⇒ F[FF], fg: ⇒ F[G], fh: ⇒ F[H], fi: ⇒ F[I], fj: ⇒ F[J], fk: ⇒ F[K])(f: (A, B, C, D, E, FF, G, H, I, J, K) ⇒ R): F[R]
    Definition Classes
    Apply
  22. def apply12[A, B, C, D, E, FF, G, H, I, J, K, L, R](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D], fe: ⇒ F[E], ff: ⇒ F[FF], fg: ⇒ F[G], fh: ⇒ F[H], fi: ⇒ F[I], fj: ⇒ F[J], fk: ⇒ F[K], fl: ⇒ F[L])(f: (A, B, C, D, E, FF, G, H, I, J, K, L) ⇒ R): F[R]
    Definition Classes
    Apply
  23. def apply2[A, B, C](fa: ⇒ F[A], fb: ⇒ F[B])(f: (A, B) ⇒ C): F[C]
  24. def apply3[A, B, C, D](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C])(f: (A, B, C) ⇒ D): F[D]
    Definition Classes
    Apply
  25. def apply4[A, B, C, D, E](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D])(f: (A, B, C, D) ⇒ E): F[E]
    Definition Classes
    Apply
  26. def apply5[A, B, C, D, E, R](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D], fe: ⇒ F[E])(f: (A, B, C, D, E) ⇒ R): F[R]
    Definition Classes
    Apply
  27. def apply6[A, B, C, D, E, FF, R](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D], fe: ⇒ F[E], ff: ⇒ F[FF])(f: (A, B, C, D, E, FF) ⇒ R): F[R]
    Definition Classes
    Apply
  28. def apply7[A, B, C, D, E, FF, G, R](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D], fe: ⇒ F[E], ff: ⇒ F[FF], fg: ⇒ F[G])(f: (A, B, C, D, E, FF, G) ⇒ R): F[R]
    Definition Classes
    Apply
  29. def apply8[A, B, C, D, E, FF, G, H, R](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D], fe: ⇒ F[E], ff: ⇒ F[FF], fg: ⇒ F[G], fh: ⇒ F[H])(f: (A, B, C, D, E, FF, G, H) ⇒ R): F[R]
    Definition Classes
    Apply
  30. def apply9[A, B, C, D, E, FF, G, H, I, R](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D], fe: ⇒ F[E], ff: ⇒ F[FF], fg: ⇒ F[G], fh: ⇒ F[H], fi: ⇒ F[I])(f: (A, B, C, D, E, FF, G, H, I) ⇒ R): F[R]
    Definition Classes
    Apply
  31. def applyApplicative: Applicative[[α]\/[F[α], α]]

    Add a unit to any Apply to form an Applicative.

    Add a unit to any Apply to form an Applicative.

    Definition Classes
    Apply
  32. def applyLaw: ApplyLaw
    Definition Classes
    Apply
  33. val applySyntax: ApplySyntax[F]
    Definition Classes
    Apply
  34. final def applying1[Z, A1](f: (A1) ⇒ Z)(implicit a1: F[A1]): F[Z]
    Definition Classes
    Apply
  35. final def applying2[Z, A1, A2](f: (A1, A2) ⇒ Z)(implicit a1: F[A1], a2: F[A2]): F[Z]
    Definition Classes
    Apply
  36. final def applying3[Z, A1, A2, A3](f: (A1, A2, A3) ⇒ Z)(implicit a1: F[A1], a2: F[A2], a3: F[A3]): F[Z]
    Definition Classes
    Apply
  37. final def applying4[Z, A1, A2, A3, A4](f: (A1, A2, A3, A4) ⇒ Z)(implicit a1: F[A1], a2: F[A2], a3: F[A3], a4: F[A4]): F[Z]
    Definition Classes
    Apply
  38. final def asInstanceOf[T0]: T0
    Definition Classes
    Any
  39. def bicompose[G[_, _]](implicit arg0: Bifunctor[G]): Bifunctor[[α, β]F[G[α, β]]]

    The composition of Functor F and Bifunctor G, [x, y]F[G[x, y]], is a Bifunctor

    The composition of Functor F and Bifunctor G, [x, y]F[G[x, y]], is a Bifunctor

    Definition Classes
    Functor
  40. def bind[A, B](fa: F[A])(f: (A) ⇒ F[B]): F[B]

    Equivalent to join(map(fa)(f)).

    Equivalent to join(map(fa)(f)).

    Definition Classes
    IsomorphismBindBind
  41. def bindLaw: BindLaw
    Definition Classes
    Bind
  42. val bindSyntax: BindSyntax[F]
    Definition Classes
    Bind
  43. def both[A, B](a: F[A], b: F[B]): F[(A, B)]

    Obtain results from both a and b, nondeterministically ordering their effects.

    Obtain results from both a and b, nondeterministically ordering their effects.

    Definition Classes
    Nondeterminism
  44. def choose[A, B](a: F[A], b: F[B]): F[\/[(A, F[B]), (F[A], B)]]

    A commutative operation which chooses nondeterministically to obtain a value from either a or b.

    A commutative operation which chooses nondeterministically to obtain a value from either a or b. If a 'wins', a 'residual' context for b is returned; if b wins, a residual context for a is returned. The residual is useful for various instances like Future, which may race the two computations and require a residual to ensure the result of the 'losing' computation is not discarded.

    This function can be defined in terms of chooseAny or vice versa. The default implementation calls chooseAny with a two-element list and uses the Functor for F to fix up types.

    Definition Classes
    Nondeterminism
  45. def chooseAny[A](head: F[A], tail: IList[F[A]]): F[(A, IList[F[A]])]
  46. def chooseAny[A](a: IList[F[A]]): Option[F[(A, IList[F[A]])]]

    A commutative operation which chooses nondeterministically to obtain a value from any of the elements of as.

    A commutative operation which chooses nondeterministically to obtain a value from any of the elements of as. In the language of posets, this constructs an antichain (a set of elements which are all incomparable) in the effect poset for this computation.

    returns

    None, if the input is empty.

    Definition Classes
    Nondeterminism
  47. def clone(): AnyRef
    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... ) @native()
  48. def compose[G[_]](implicit G0: Applicative[G]): Applicative[[α]F[G[α]]]

    The composition of Applicatives F and G, [x]F[G[x]], is an Applicative

    The composition of Applicatives F and G, [x]F[G[x]], is an Applicative

    Definition Classes
    Applicative
  49. def compose[G[_]](implicit G0: Apply[G]): Apply[[α]F[G[α]]]

    The composition of Applys F and G, [x]F[G[x]], is a Apply

    The composition of Applys F and G, [x]F[G[x]], is a Apply

    Definition Classes
    Apply
  50. def compose[G[_]](implicit G0: Functor[G]): Functor[[α]F[G[α]]]

    The composition of Functors F and G, [x]F[G[x]], is a Functor

    The composition of Functors F and G, [x]F[G[x]], is a Functor

    Definition Classes
    Functor
  51. def counzip[A, B](a: \/[F[A], F[B]]): F[\/[A, B]]
    Definition Classes
    Functor
  52. def discardLeft[A, B](fa: ⇒ F[A], fb: ⇒ F[B]): F[B]

    Combine fa and fb according to Apply[F] with a function that discards the A(s)

    Combine fa and fb according to Apply[F] with a function that discards the A(s)

    Definition Classes
    Apply
  53. def discardRight[A, B](fa: ⇒ F[A], fb: ⇒ F[B]): F[A]

    Combine fa and fb according to Apply[F] with a function that discards the B(s)

    Combine fa and fb according to Apply[F] with a function that discards the B(s)

    Definition Classes
    Apply
  54. final def eq(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  55. def equals(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  56. def filterM[A](l: IList[A])(f: (A) ⇒ F[Boolean]): F[IList[A]]

    Filter l according to an applicative predicate.

    Filter l according to an applicative predicate.

    Definition Classes
    Applicative
  57. def filterM[A](l: List[A])(f: (A) ⇒ F[Boolean]): F[List[A]]

    Filter l according to an applicative predicate.

    Filter l according to an applicative predicate.

    Definition Classes
    Applicative
  58. def filterM[A, B](map: ==>>[A, B])(f: (B) ⇒ F[Boolean])(implicit O: Order[A]): F[==>>[A, B]]

    Filter map according to an applicative predicate.

    Filter map according to an applicative predicate. *

    Definition Classes
    Applicative
  59. def finalize(): Unit
    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  60. def flip: Applicative[F]

    An Applicative for F in which effects happen in the opposite order.

    An Applicative for F in which effects happen in the opposite order.

    Definition Classes
    ApplicativeApply
  61. def forever[A, B](fa: F[A]): F[B]

    Repeats an applicative action infinitely

    Repeats an applicative action infinitely

    Definition Classes
    Apply
  62. def fpair[A](fa: F[A]): F[(A, A)]

    Twin all As in fa.

    Twin all As in fa.

    Definition Classes
    Functor
  63. def fproduct[A, B](fa: F[A])(f: (A) ⇒ B): F[(A, B)]

    Pair all As in fa with the result of function application.

    Pair all As in fa with the result of function application.

    Definition Classes
    Functor
  64. def functorLaw: FunctorLaw
    Definition Classes
    Functor
  65. val functorSyntax: FunctorSyntax[F]
    Definition Classes
    Functor
  66. def gather[A](fs: IList[F[A]]): F[IList[A]]

    Nondeterministically gather results from the given sequence of actions.

    Nondeterministically gather results from the given sequence of actions. This function is the nondeterministic analogue of sequence and should behave identically to sequence so long as there is no interaction between the effects being gathered. However, unlike sequence, which decides on a total order of effects, the effects in a gather are unordered with respect to each other.

    Although the effects are unordered, we ensure the order of results matches the order of the input sequence. Also see gatherUnordered.

    Definition Classes
    Nondeterminism
  67. def gather1[A](fs: NonEmptyList[F[A]]): F[NonEmptyList[A]]
    Definition Classes
    Nondeterminism
  68. def gatherUnordered[A](fs: IList[F[A]]): F[IList[A]]

    Nondeterministically gather results from the given sequence of actions to a list.

    Nondeterministically gather results from the given sequence of actions to a list. Same as calling reduceUnordered with the List Monoid.

    To preserve the order of the output list while allowing nondetermininstic ordering of effects, use gather.

    Definition Classes
    Nondeterminism
  69. def gatherUnordered1[A](fs: NonEmptyList[F[A]]): F[NonEmptyList[A]]
    Definition Classes
    Nondeterminism
  70. final def getClass(): Class[_]
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  71. def hashCode(): Int
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  72. def icompose[G[_]](implicit G0: Contravariant[G]): Contravariant[[α]F[G[α]]]

    The composition of Functor F and Contravariant G, [x]F[G[x]], is contravariant.

    The composition of Functor F and Contravariant G, [x]F[G[x]], is contravariant.

    Definition Classes
    Functor
  73. def ifM[B](value: F[Boolean], ifTrue: ⇒ F[B], ifFalse: ⇒ F[B]): F[B]

    if lifted into a binding.

    if lifted into a binding. Unlike lift3((t,c,a)=>if(t)c else a), this will only include context from the chosen of ifTrue and ifFalse, not the other.

    Definition Classes
    Bind
  74. val invariantApplicativeSyntax: InvariantApplicativeSyntax[F]
    Definition Classes
    InvariantApplicative
  75. def invariantFunctorLaw: InvariantFunctorLaw
    Definition Classes
    InvariantFunctor
  76. val invariantFunctorSyntax: InvariantFunctorSyntax[F]
    Definition Classes
    InvariantFunctor
  77. final def isInstanceOf[T0]: Boolean
    Definition Classes
    Any
  78. def iterateUntil[A](f: F[A])(p: (A) ⇒ Boolean): F[A]

    Execute an action repeatedly until its result satisfies the given predicate and return that result, discarding all others.

    Execute an action repeatedly until its result satisfies the given predicate and return that result, discarding all others.

    Definition Classes
    Monad
  79. def iterateWhile[A](f: F[A])(p: (A) ⇒ Boolean): F[A]

    Execute an action repeatedly until its result fails to satisfy the given predicate and return that result, discarding all others.

    Execute an action repeatedly until its result fails to satisfy the given predicate and return that result, discarding all others.

    Definition Classes
    Monad
  80. def join[A](ffa: F[F[A]]): F[A]

    Sequence the inner F of FFA after the outer F, forming a single F[A].

    Sequence the inner F of FFA after the outer F, forming a single F[A].

    Definition Classes
    Bind
  81. def lift[A, B](f: (A) ⇒ B): (F[A]) ⇒ F[B]

    Lift f into F.

    Lift f into F.

    Definition Classes
    Functor
  82. def lift10[A, B, C, D, E, FF, G, H, I, J, R](f: (A, B, C, D, E, FF, G, H, I, J) ⇒ R): (F[A], F[B], F[C], F[D], F[E], F[FF], F[G], F[H], F[I], F[J]) ⇒ F[R]
    Definition Classes
    Apply
  83. def lift11[A, B, C, D, E, FF, G, H, I, J, K, R](f: (A, B, C, D, E, FF, G, H, I, J, K) ⇒ R): (F[A], F[B], F[C], F[D], F[E], F[FF], F[G], F[H], F[I], F[J], F[K]) ⇒ F[R]
    Definition Classes
    Apply
  84. def lift12[A, B, C, D, E, FF, G, H, I, J, K, L, R](f: (A, B, C, D, E, FF, G, H, I, J, K, L) ⇒ R): (F[A], F[B], F[C], F[D], F[E], F[FF], F[G], F[H], F[I], F[J], F[K], F[L]) ⇒ F[R]
    Definition Classes
    Apply
  85. def lift2[A, B, C](f: (A, B) ⇒ C): (F[A], F[B]) ⇒ F[C]
    Definition Classes
    Apply
  86. def lift3[A, B, C, D](f: (A, B, C) ⇒ D): (F[A], F[B], F[C]) ⇒ F[D]
    Definition Classes
    Apply
  87. def lift4[A, B, C, D, E](f: (A, B, C, D) ⇒ E): (F[A], F[B], F[C], F[D]) ⇒ F[E]
    Definition Classes
    Apply
  88. def lift5[A, B, C, D, E, R](f: (A, B, C, D, E) ⇒ R): (F[A], F[B], F[C], F[D], F[E]) ⇒ F[R]
    Definition Classes
    Apply
  89. def lift6[A, B, C, D, E, FF, R](f: (A, B, C, D, E, FF) ⇒ R): (F[A], F[B], F[C], F[D], F[E], F[FF]) ⇒ F[R]
    Definition Classes
    Apply
  90. def lift7[A, B, C, D, E, FF, G, R](f: (A, B, C, D, E, FF, G) ⇒ R): (F[A], F[B], F[C], F[D], F[E], F[FF], F[G]) ⇒ F[R]
    Definition Classes
    Apply
  91. def lift8[A, B, C, D, E, FF, G, H, R](f: (A, B, C, D, E, FF, G, H) ⇒ R): (F[A], F[B], F[C], F[D], F[E], F[FF], F[G], F[H]) ⇒ F[R]
    Definition Classes
    Apply
  92. def lift9[A, B, C, D, E, FF, G, H, I, R](f: (A, B, C, D, E, FF, G, H, I) ⇒ R): (F[A], F[B], F[C], F[D], F[E], F[FF], F[G], F[H], F[I]) ⇒ F[R]
    Definition Classes
    Apply
  93. def liftReducer[A, B](implicit r: Reducer[A, B]): Reducer[F[A], F[B]]
    Definition Classes
    Apply
  94. def map[A, B](fa: F[A])(f: (A) ⇒ B): F[B]

    Lift f into F and apply to F[A].

    Lift f into F and apply to F[A].

    Definition Classes
    IsomorphismFunctorFunctor
  95. def mapBoth[A, B, C](a: F[A], b: F[B])(f: (A, B) ⇒ C): F[C]

    Apply a function to the results of a and b, nondeterminstically ordering their effects.

    Apply a function to the results of a and b, nondeterminstically ordering their effects.

    Definition Classes
    Nondeterminism
  96. def mapply[A, B](a: A)(f: F[(A) ⇒ B]): F[B]

    Lift apply(a), and apply the result to f.

    Lift apply(a), and apply the result to f.

    Definition Classes
    Functor
  97. def monadLaw: MonadLaw
    Definition Classes
    Monad
  98. val monadSyntax: MonadSyntax[F]
    Definition Classes
    Monad
  99. def mproduct[A, B](fa: F[A])(f: (A) ⇒ F[B]): F[(A, B)]

    Pair A with the result of function application.

    Pair A with the result of function application.

    Definition Classes
    Bind
  100. final def ne(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  101. def nmap2[A, B, C](a: F[A], b: F[B])(f: (A, B) ⇒ C): F[C]

    Apply a function to 2 results, nondeterminstically ordering their effects, alias of mapBoth

    Apply a function to 2 results, nondeterminstically ordering their effects, alias of mapBoth

    Definition Classes
    Nondeterminism
  102. def nmap3[A, B, C, R](a: F[A], b: F[B], c: F[C])(f: (A, B, C) ⇒ R): F[R]

    Apply a function to 3 results, nondeterminstically ordering their effects

    Apply a function to 3 results, nondeterminstically ordering their effects

    Definition Classes
    Nondeterminism
  103. def nmap4[A, B, C, D, R](a: F[A], b: F[B], c: F[C], d: F[D])(f: (A, B, C, D) ⇒ R): F[R]

    Apply a function to 4 results, nondeterminstically ordering their effects

    Apply a function to 4 results, nondeterminstically ordering their effects

    Definition Classes
    Nondeterminism
  104. def nmap5[A, B, C, D, E, R](a: F[A], b: F[B], c: F[C], d: F[D], e: F[E])(f: (A, B, C, D, E) ⇒ R): F[R]

    Apply a function to 5 results, nondeterminstically ordering their effects

    Apply a function to 5 results, nondeterminstically ordering their effects

    Definition Classes
    Nondeterminism
  105. def nmap6[A, B, C, D, E, FF, R](a: F[A], b: F[B], c: F[C], d: F[D], e: F[E], ff: F[FF])(f: (A, B, C, D, E, FF) ⇒ R): F[R]

    Apply a function to 6 results, nondeterminstically ordering their effects

    Apply a function to 6 results, nondeterminstically ordering their effects

    Definition Classes
    Nondeterminism
  106. val nondeterminismSyntax: NondeterminismSyntax[F]
    Definition Classes
    Nondeterminism
  107. final def notify(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  108. final def notifyAll(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  109. def par: Par[F]

    A lawful implementation of this that is isomorphic up to the methods defined on Applicative allowing for optimised parallel implementations that would otherwise violate laws of more specific typeclasses (e.g.

    A lawful implementation of this that is isomorphic up to the methods defined on Applicative allowing for optimised parallel implementations that would otherwise violate laws of more specific typeclasses (e.g. Monad).

    Definition Classes
    Applicative
  110. def parallel: Applicative[[α]TagKind.@@[F[α], Parallel]]
    Definition Classes
    Nondeterminism
  111. def plusA[A](x: ⇒ F[A], y: ⇒ F[A])(implicit sa: Semigroup[A]): F[A]

    Semigroups can be added within an Applicative

    Semigroups can be added within an Applicative

    Definition Classes
    Applicative
  112. def point[A](a: ⇒ A): F[A]
    Definition Classes
    IsomorphismApplicativeApplicative
  113. def product[G[_]](implicit G0: Monad[G]): Monad[[α](F[α], G[α])]

    The product of Monad F and G, [x](F[x], G[x]]), is a Monad

    The product of Monad F and G, [x](F[x], G[x]]), is a Monad

    Definition Classes
    Monad
  114. def product[G[_]](implicit G0: Bind[G]): Bind[[α](F[α], G[α])]

    The product of Bind F and G, [x](F[x], G[x]]), is a Bind

    The product of Bind F and G, [x](F[x], G[x]]), is a Bind

    Definition Classes
    Bind
  115. def product[G[_]](implicit G0: Applicative[G]): Applicative[[α](F[α], G[α])]

    The product of Applicatives F and G, [x](F[x], G[x]]), is an Applicative

    The product of Applicatives F and G, [x](F[x], G[x]]), is an Applicative

    Definition Classes
    Applicative
  116. def product[G[_]](implicit G0: Apply[G]): Apply[[α](F[α], G[α])]

    The product of Applys F and G, [x](F[x], G[x]]), is a Apply

    The product of Applys F and G, [x](F[x], G[x]]), is a Apply

    Definition Classes
    Apply
  117. def product[G[_]](implicit G0: Functor[G]): Functor[[α](F[α], G[α])]

    The product of Functors F and G, [x](F[x], G[x]]), is a Functor

    The product of Functors F and G, [x](F[x], G[x]]), is a Functor

    Definition Classes
    Functor
  118. final def pure[A](a: ⇒ A): F[A]
    Definition Classes
    Applicative
  119. def reduceUnordered[A, M](fs: IList[F[A]])(implicit R: Reducer[A, M], M: Monoid[M]): F[M]

    Nondeterministically gather results from the given sequence of actions.

    Nondeterministically gather results from the given sequence of actions. The result will be arbitrarily reordered, depending on the order results come back in a sequence of calls to chooseAny.

    Definition Classes
    Nondeterminism
  120. def replicateM[A](n: Int, fa: F[A]): F[IList[A]]

    Performs the action n times, returning the list of results.

    Performs the action n times, returning the list of results.

    Definition Classes
    Applicative
  121. def replicateM_[A](n: Int, fa: F[A]): F[Unit]

    Performs the action n times, returning nothing.

    Performs the action n times, returning nothing.

    Definition Classes
    Applicative
  122. def sequence[A, G[_]](as: G[F[A]])(implicit arg0: Traverse[G]): F[G[A]]
    Definition Classes
    Applicative
  123. def sequence1[A, G[_]](as: G[F[A]])(implicit arg0: Traverse1[G]): F[G[A]]
    Definition Classes
    Apply
  124. def strengthL[A, B](a: A, f: F[B]): F[(A, B)]

    Inject a to the left of Bs in f.

    Inject a to the left of Bs in f.

    Definition Classes
    Functor
  125. def strengthR[A, B](f: F[A], b: B): F[(A, B)]

    Inject b to the right of As in f.

    Inject b to the right of As in f.

    Definition Classes
    Functor
  126. final def synchronized[T0](arg0: ⇒ T0): T0
    Definition Classes
    AnyRef
  127. def toString(): String
    Definition Classes
    AnyRef → Any
  128. def traverse[A, G[_], B](value: G[A])(f: (A) ⇒ F[B])(implicit G: Traverse[G]): F[G[B]]
    Definition Classes
    Applicative
  129. def traverse1[A, G[_], B](value: G[A])(f: (A) ⇒ F[B])(implicit G: Traverse1[G]): F[G[B]]
    Definition Classes
    Apply
  130. def tuple2[A, B](fa: ⇒ F[A], fb: ⇒ F[B]): F[(A, B)]
    Definition Classes
    Apply
  131. def tuple3[A, B, C](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C]): F[(A, B, C)]
    Definition Classes
    Apply
  132. def tuple4[A, B, C, D](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D]): F[(A, B, C, D)]
    Definition Classes
    Apply
  133. def tuple5[A, B, C, D, E](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D], fe: ⇒ F[E]): F[(A, B, C, D, E)]
    Definition Classes
    Apply
  134. def unfoldrOpt[S, A, B](seed: S)(f: (S) ⇒ Maybe[(F[A], S)])(implicit R: Reducer[A, B]): Maybe[F[B]]

    Unfold seed to the right and combine effects left-to-right, using the given Reducer to combine values.

    Unfold seed to the right and combine effects left-to-right, using the given Reducer to combine values. Implementations may override this method to not unfold more than is necessary to determine the result.

    Definition Classes
    Apply
  135. def unlessM[A](cond: Boolean)(f: ⇒ F[A]): F[Unit]

    Returns the given argument if cond is false, otherwise, unit lifted into F.

    Returns the given argument if cond is false, otherwise, unit lifted into F.

    Definition Classes
    Applicative
  136. def untilM[G[_], A](f: F[A], cond: ⇒ F[Boolean])(implicit G: MonadPlus[G]): F[G[A]]

    Execute an action repeatedly until the Boolean condition returns true.

    Execute an action repeatedly until the Boolean condition returns true. The condition is evaluated after the loop body. Collects results into an arbitrary MonadPlus value, such as a List.

    Definition Classes
    Monad
  137. def untilM_[A](f: F[A], cond: ⇒ F[Boolean]): F[Unit]

    Execute an action repeatedly until the Boolean condition returns true.

    Execute an action repeatedly until the Boolean condition returns true. The condition is evaluated after the loop body. Discards results.

    Definition Classes
    Monad
  138. def void[A](fa: F[A]): F[Unit]

    Empty fa of meaningful pure values, preserving its structure.

    Empty fa of meaningful pure values, preserving its structure.

    Definition Classes
    Functor
  139. final def wait(): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  140. final def wait(arg0: Long, arg1: Int): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  141. final def wait(arg0: Long): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... ) @native()
  142. def whenM[A](cond: Boolean)(f: ⇒ F[A]): F[Unit]

    Returns the given argument if cond is true, otherwise, unit lifted into F.

    Returns the given argument if cond is true, otherwise, unit lifted into F.

    Definition Classes
    Applicative
  143. def whileM[G[_], A](p: F[Boolean], body: ⇒ F[A])(implicit G: MonadPlus[G]): F[G[A]]

    Execute an action repeatedly as long as the given Boolean expression returns true.

    Execute an action repeatedly as long as the given Boolean expression returns true. The condition is evaluated before the loop body. Collects the results into an arbitrary MonadPlus value, such as a List.

    Definition Classes
    Monad
  144. def whileM_[A](p: F[Boolean], body: ⇒ F[A]): F[Unit]

    Execute an action repeatedly as long as the given Boolean expression returns true.

    Execute an action repeatedly as long as the given Boolean expression returns true. The condition is evaluated before the loop body. Discards results.

    Definition Classes
    Monad
  145. def widen[A, B](fa: F[A])(implicit ev: <~<[A, B]): F[B]

    Functors are covariant by nature, so we can treat an F[A] as an F[B] if A is a subtype of B.

    Functors are covariant by nature, so we can treat an F[A] as an F[B] if A is a subtype of B.

    Definition Classes
    Functor
  146. final def xderiving0[Z](z: ⇒ Z): F[Z]
    Definition Classes
    InvariantApplicative
  147. final def xderiving1[Z, A1](f: (A1) ⇒ Z, g: (Z) ⇒ A1)(implicit a1: F[A1]): F[Z]
    Definition Classes
    InvariantApplicative
  148. final def xderiving2[Z, A1, A2](f: (A1, A2) ⇒ Z, g: (Z) ⇒ (A1, A2))(implicit a1: F[A1], a2: F[A2]): F[Z]
    Definition Classes
    InvariantApplicative
  149. final def xderiving3[Z, A1, A2, A3](f: (A1, A2, A3) ⇒ Z, g: (Z) ⇒ (A1, A2, A3))(implicit a1: F[A1], a2: F[A2], a3: F[A3]): F[Z]
    Definition Classes
    InvariantApplicative
  150. final def xderiving4[Z, A1, A2, A3, A4](f: (A1, A2, A3, A4) ⇒ Z, g: (Z) ⇒ (A1, A2, A3, A4))(implicit a1: F[A1], a2: F[A2], a3: F[A3], a4: F[A4]): F[Z]
    Definition Classes
    InvariantApplicative
  151. def xmap[A, B](ma: F[A], f: (A) ⇒ B, g: (B) ⇒ A): F[B]

    Converts ma to a value of type F[B] using the provided functions f and g.

    Converts ma to a value of type F[B] using the provided functions f and g.

    Definition Classes
    IsomorphismInvariantFunctorInvariantFunctor
  152. def xmapb[A, B](ma: F[A])(b: Bijection[A, B]): F[B]

    Converts ma to a value of type F[B] using the provided bijection.

    Converts ma to a value of type F[B] using the provided bijection.

    Definition Classes
    InvariantFunctor
  153. def xmapi[A, B](ma: F[A])(iso: Isomorphism.<=>[A, B]): F[B]

    Converts ma to a value of type F[B] using the provided isomorphism.

    Converts ma to a value of type F[B] using the provided isomorphism.

    Definition Classes
    InvariantFunctor
  154. def xproduct0[Z](z: ⇒ Z): F[Z]
  155. def xproduct1[Z, A1](a1: ⇒ F[A1])(f: (A1) ⇒ Z, g: (Z) ⇒ A1): F[Z]
  156. def xproduct2[Z, A1, A2](a1: ⇒ F[A1], a2: ⇒ F[A2])(f: (A1, A2) ⇒ Z, g: (Z) ⇒ (A1, A2)): F[Z]
  157. def xproduct3[Z, A1, A2, A3](a1: ⇒ F[A1], a2: ⇒ F[A2], a3: ⇒ F[A3])(f: (A1, A2, A3) ⇒ Z, g: (Z) ⇒ (A1, A2, A3)): F[Z]
  158. def xproduct4[Z, A1, A2, A3, A4](a1: ⇒ F[A1], a2: ⇒ F[A2], a3: ⇒ F[A3], a4: ⇒ F[A4])(f: (A1, A2, A3, A4) ⇒ Z, g: (Z) ⇒ (A1, A2, A3, A4)): F[Z]

Inherited from IsomorphismMonad[F, G]

Inherited from IsomorphismBind[F, G]

Inherited from IsomorphismApplicative[F, G]

Inherited from IsomorphismInvariantApplicative[F, G]

Inherited from IsomorphismApply[F, G]

Inherited from IsomorphismFunctor[F, G]

Inherited from IsomorphismInvariantFunctor[F, G]

Inherited from Nondeterminism[F]

Inherited from Monad[F]

Inherited from Bind[F]

Inherited from Applicative[F]

Inherited from InvariantApplicative[F]

Inherited from Apply[F]

Inherited from Functor[F]

Inherited from InvariantFunctor[F]

Inherited from AnyRef

Inherited from Any

Ungrouped