trait Lan[G[_], H[_], A] extends AnyRef
- Alphabetic
- By Inheritance
- Lan
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Type Members
- abstract type I
Concrete Value Members
- def map[B](g: (A) ⇒ B): Lan[G, H, B]
-
def
toAdjoint[F[_]](implicit H: Functor[H], A: Adjunction[G, F]): H[F[A]]
If
G
is left adjoint toF
, there is a natural isomorphism betweenLan[G,H,_]
andH[F[_]]
-
def
toLan[F[_]](s: ~>[H, [α]F[G[α]]])(implicit arg0: Functor[F]): F[A]
The universal property of a left Kan extension.
The universal property of a left Kan extension. The functor
Lan[G,H,_]
and the natural transformationglan[G,H,_]
are universal in the sense that for any functorF
and a natural transformations
fromH
toF[G[_]]
, a unique natural transformationtoLan
exists fromLan[G,H,_]
toF
such that for allh
,glan(h).toLan = s(h)
.