Packages

t

scalaz

IsomorphismApplicativePlus

trait IsomorphismApplicativePlus[F[_], G[_]] extends ApplicativePlus[F] with IsomorphismApplicative[F, G] with IsomorphismPlusEmpty[F, G]

Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. IsomorphismApplicativePlus
  2. IsomorphismPlusEmpty
  3. IsomorphismPlus
  4. IsomorphismApplicative
  5. IsomorphismInvariantApplicative
  6. IsomorphismApply
  7. IsomorphismFunctor
  8. IsomorphismInvariantFunctor
  9. ApplicativePlus
  10. PlusEmpty
  11. Plus
  12. Applicative
  13. InvariantApplicative
  14. Apply
  15. Functor
  16. InvariantFunctor
  17. AnyRef
  18. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. Protected

Type Members

  1. trait ApplicativeLaw extends ApplyLaw
    Definition Classes
    Applicative
  2. trait ApplyLaw extends FunctorLaw
    Definition Classes
    Apply
  3. trait FlippedApply extends Apply[F]
    Attributes
    protected[this]
    Definition Classes
    Apply
  4. trait FunctorLaw extends InvariantFunctorLaw
    Definition Classes
    Functor
  5. trait InvariantFunctorLaw extends AnyRef
    Definition Classes
    InvariantFunctor
  6. trait PlusLaw extends AnyRef
    Definition Classes
    Plus
  7. trait EmptyLaw extends PlusLaw
    Definition Classes
    PlusEmpty

Concrete Value Members

  1. final def !=(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  2. final def ##: Int
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  4. def ap[A, B](fa: => F[A])(f: => F[(A) => B]): F[B]

    Sequence f, then fa, combining their results by function application.

    Sequence f, then fa, combining their results by function application.

    NB: with respect to apply2 and all other combinators, as well as scalaz.Bind, the f action appears to the *left*. So f should be the "first" F-action to perform. This is in accordance with all other implementations of this typeclass in common use, which are "function first".

    Definition Classes
    IsomorphismApplicativeIsomorphismApplyApply
  5. def ap2[A, B, C](fa: => F[A], fb: => F[B])(f: F[(A, B) => C]): F[C]
    Definition Classes
    Apply
  6. def ap3[A, B, C, D](fa: => F[A], fb: => F[B], fc: => F[C])(f: F[(A, B, C) => D]): F[D]
    Definition Classes
    Apply
  7. def ap4[A, B, C, D, E](fa: => F[A], fb: => F[B], fc: => F[C], fd: => F[D])(f: F[(A, B, C, D) => E]): F[E]
    Definition Classes
    Apply
  8. def ap5[A, B, C, D, E, R](fa: => F[A], fb: => F[B], fc: => F[C], fd: => F[D], fe: => F[E])(f: F[(A, B, C, D, E) => R]): F[R]
    Definition Classes
    Apply
  9. def ap6[A, B, C, D, E, FF, R](fa: => F[A], fb: => F[B], fc: => F[C], fd: => F[D], fe: => F[E], ff: => F[FF])(f: F[(A, B, C, D, E, FF) => R]): F[R]
    Definition Classes
    Apply
  10. def ap7[A, B, C, D, E, FF, G, R](fa: => F[A], fb: => F[B], fc: => F[C], fd: => F[D], fe: => F[E], ff: => F[FF], fg: => F[G])(f: F[(A, B, C, D, E, FF, G) => R]): F[R]
    Definition Classes
    Apply
  11. def ap8[A, B, C, D, E, FF, G, H, R](fa: => F[A], fb: => F[B], fc: => F[C], fd: => F[D], fe: => F[E], ff: => F[FF], fg: => F[G], fh: => F[H])(f: F[(A, B, C, D, E, FF, G, H) => R]): F[R]
    Definition Classes
    Apply
  12. def apF[A, B](f: => F[(A) => B]): (F[A]) => F[B]

    Flipped variant of ap.

    Flipped variant of ap.

    Definition Classes
    Apply
  13. def applicativeLaw: ApplicativeLaw
    Definition Classes
    Applicative
  14. val applicativePlusSyntax: ApplicativePlusSyntax[F]
    Definition Classes
    ApplicativePlus
  15. val applicativeSyntax: ApplicativeSyntax[F]
    Definition Classes
    Applicative
  16. def apply[A, B](fa: F[A])(f: (A) => B): F[B]

    Alias for map.

    Alias for map.

    Definition Classes
    Functor
  17. def apply10[A, B, C, D, E, FF, G, H, I, J, R](fa: => F[A], fb: => F[B], fc: => F[C], fd: => F[D], fe: => F[E], ff: => F[FF], fg: => F[G], fh: => F[H], fi: => F[I], fj: => F[J])(f: (A, B, C, D, E, FF, G, H, I, J) => R): F[R]
    Definition Classes
    Apply
  18. def apply11[A, B, C, D, E, FF, G, H, I, J, K, R](fa: => F[A], fb: => F[B], fc: => F[C], fd: => F[D], fe: => F[E], ff: => F[FF], fg: => F[G], fh: => F[H], fi: => F[I], fj: => F[J], fk: => F[K])(f: (A, B, C, D, E, FF, G, H, I, J, K) => R): F[R]
    Definition Classes
    Apply
  19. def apply12[A, B, C, D, E, FF, G, H, I, J, K, L, R](fa: => F[A], fb: => F[B], fc: => F[C], fd: => F[D], fe: => F[E], ff: => F[FF], fg: => F[G], fh: => F[H], fi: => F[I], fj: => F[J], fk: => F[K], fl: => F[L])(f: (A, B, C, D, E, FF, G, H, I, J, K, L) => R): F[R]
    Definition Classes
    Apply
  20. def apply2[A, B, C](fa: => F[A], fb: => F[B])(f: (A, B) => C): F[C]
  21. def apply3[A, B, C, D](fa: => F[A], fb: => F[B], fc: => F[C])(f: (A, B, C) => D): F[D]
    Definition Classes
    Apply
  22. def apply4[A, B, C, D, E](fa: => F[A], fb: => F[B], fc: => F[C], fd: => F[D])(f: (A, B, C, D) => E): F[E]
    Definition Classes
    Apply
  23. def apply5[A, B, C, D, E, R](fa: => F[A], fb: => F[B], fc: => F[C], fd: => F[D], fe: => F[E])(f: (A, B, C, D, E) => R): F[R]
    Definition Classes
    Apply
  24. def apply6[A, B, C, D, E, FF, R](fa: => F[A], fb: => F[B], fc: => F[C], fd: => F[D], fe: => F[E], ff: => F[FF])(f: (A, B, C, D, E, FF) => R): F[R]
    Definition Classes
    Apply
  25. def apply7[A, B, C, D, E, FF, G, R](fa: => F[A], fb: => F[B], fc: => F[C], fd: => F[D], fe: => F[E], ff: => F[FF], fg: => F[G])(f: (A, B, C, D, E, FF, G) => R): F[R]
    Definition Classes
    Apply
  26. def apply8[A, B, C, D, E, FF, G, H, R](fa: => F[A], fb: => F[B], fc: => F[C], fd: => F[D], fe: => F[E], ff: => F[FF], fg: => F[G], fh: => F[H])(f: (A, B, C, D, E, FF, G, H) => R): F[R]
    Definition Classes
    Apply
  27. def apply9[A, B, C, D, E, FF, G, H, I, R](fa: => F[A], fb: => F[B], fc: => F[C], fd: => F[D], fe: => F[E], ff: => F[FF], fg: => F[G], fh: => F[H], fi: => F[I])(f: (A, B, C, D, E, FF, G, H, I) => R): F[R]
    Definition Classes
    Apply
  28. def applyApplicative: Applicative[[α]\/[F[α], α]]

    Add a unit to any Apply to form an Applicative.

    Add a unit to any Apply to form an Applicative.

    Definition Classes
    Apply
  29. def applyLaw: ApplyLaw
    Definition Classes
    Apply
  30. val applySyntax: ApplySyntax[F]
    Definition Classes
    Apply
  31. final def applying1[Z, A1](f: (A1) => Z)(implicit a1: F[A1]): F[Z]
    Definition Classes
    Apply
  32. final def applying2[Z, A1, A2](f: (A1, A2) => Z)(implicit a1: F[A1], a2: F[A2]): F[Z]
    Definition Classes
    Apply
  33. final def applying3[Z, A1, A2, A3](f: (A1, A2, A3) => Z)(implicit a1: F[A1], a2: F[A2], a3: F[A3]): F[Z]
    Definition Classes
    Apply
  34. final def applying4[Z, A1, A2, A3, A4](f: (A1, A2, A3, A4) => Z)(implicit a1: F[A1], a2: F[A2], a3: F[A3], a4: F[A4]): F[Z]
    Definition Classes
    Apply
  35. final def asInstanceOf[T0]: T0
    Definition Classes
    Any
  36. def bicompose[G[_, _]](implicit arg0: Bifunctor[G]): Bifunctor[[α, β]F[G[α, β]]]

    The composition of Functor F and Bifunctor G, [x, y]F[G[x, y]], is a Bifunctor

    The composition of Functor F and Bifunctor G, [x, y]F[G[x, y]], is a Bifunctor

    Definition Classes
    Functor
  37. def clone(): AnyRef
    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws(classOf[java.lang.CloneNotSupportedException]) @native()
  38. def compose[G[_]](implicit G0: Applicative[G]): ApplicativePlus[[α]F[G[α]]]

    The composition of ApplicativePlus F and Applicative G, [x]F[G[x]], is a ApplicativePlus

    The composition of ApplicativePlus F and Applicative G, [x]F[G[x]], is a ApplicativePlus

    Definition Classes
    ApplicativePlusApplicative
  39. def compose[G[_]]: PlusEmpty[[α]F[G[α]]]

    The composition of PlusEmpty F and G, [x]F[G[x]], is a PlusEmpty

    The composition of PlusEmpty F and G, [x]F[G[x]], is a PlusEmpty

    Definition Classes
    PlusEmptyPlus
  40. def compose[G[_]](implicit G0: Apply[G]): Apply[[α]F[G[α]]]

    The composition of Applys F and G, [x]F[G[x]], is a Apply

    The composition of Applys F and G, [x]F[G[x]], is a Apply

    Definition Classes
    Apply
  41. def compose[G[_]](implicit G0: Functor[G]): Functor[[α]F[G[α]]]

    The composition of Functors F and G, [x]F[G[x]], is a Functor

    The composition of Functors F and G, [x]F[G[x]], is a Functor

    Definition Classes
    Functor
  42. def counzip[A, B](a: \/[F[A], F[B]]): F[\/[A, B]]
    Definition Classes
    Functor
  43. def discardLeft[A, B](fa: => F[A], fb: => F[B]): F[B]

    Combine fa and fb according to Apply[F] with a function that discards the A(s)

    Combine fa and fb according to Apply[F] with a function that discards the A(s)

    Definition Classes
    Apply
  44. def discardRight[A, B](fa: => F[A], fb: => F[B]): F[A]

    Combine fa and fb according to Apply[F] with a function that discards the B(s)

    Combine fa and fb according to Apply[F] with a function that discards the B(s)

    Definition Classes
    Apply
  45. def empty[A]: F[A]
    Definition Classes
    IsomorphismPlusEmptyPlusEmpty
  46. final def eq(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  47. def equals(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef → Any
  48. def filterM[A](l: IList[A])(f: (A) => F[Boolean]): F[IList[A]]

    Filter l according to an applicative predicate.

    Filter l according to an applicative predicate.

    Definition Classes
    Applicative
  49. def filterM[A](l: List[A])(f: (A) => F[Boolean]): F[List[A]]

    Filter l according to an applicative predicate.

    Filter l according to an applicative predicate.

    Definition Classes
    Applicative
  50. def filterM[A, B](map: ==>>[A, B])(f: (B) => F[Boolean])(implicit O: Order[A]): F[==>>[A, B]]

    Filter map according to an applicative predicate.

    Filter map according to an applicative predicate. *

    Definition Classes
    Applicative
  51. def finalize(): Unit
    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws(classOf[java.lang.Throwable])
  52. def flip: Applicative[F]

    An Applicative for F in which effects happen in the opposite order.

    An Applicative for F in which effects happen in the opposite order.

    Definition Classes
    ApplicativeApply
  53. def forever[A, B](fa: F[A]): F[B]

    Repeats an applicative action infinitely

    Repeats an applicative action infinitely

    Definition Classes
    Apply
  54. def fpair[A](fa: F[A]): F[(A, A)]

    Twin all As in fa.

    Twin all As in fa.

    Definition Classes
    Functor
  55. def fproduct[A, B](fa: F[A])(f: (A) => B): F[(A, B)]

    Pair all As in fa with the result of function application.

    Pair all As in fa with the result of function application.

    Definition Classes
    Functor
  56. def functorLaw: FunctorLaw
    Definition Classes
    Functor
  57. val functorSyntax: FunctorSyntax[F]
    Definition Classes
    Functor
  58. final def getClass(): Class[_ <: AnyRef]
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  59. def hashCode(): Int
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  60. def icompose[G[_]](implicit G0: Contravariant[G]): Contravariant[[α]F[G[α]]]

    The composition of Functor F and Contravariant G, [x]F[G[x]], is contravariant.

    The composition of Functor F and Contravariant G, [x]F[G[x]], is contravariant.

    Definition Classes
    Functor
  61. val invariantApplicativeSyntax: InvariantApplicativeSyntax[F]
    Definition Classes
    InvariantApplicative
  62. def invariantFunctorLaw: InvariantFunctorLaw
    Definition Classes
    InvariantFunctor
  63. val invariantFunctorSyntax: InvariantFunctorSyntax[F]
    Definition Classes
    InvariantFunctor
  64. final def isInstanceOf[T0]: Boolean
    Definition Classes
    Any
  65. def lift[A, B](f: (A) => B): (F[A]) => F[B]

    Lift f into F.

    Lift f into F.

    Definition Classes
    Functor
  66. def lift10[A, B, C, D, E, FF, G, H, I, J, R](f: (A, B, C, D, E, FF, G, H, I, J) => R): (F[A], F[B], F[C], F[D], F[E], F[FF], F[G], F[H], F[I], F[J]) => F[R]
    Definition Classes
    Apply
  67. def lift11[A, B, C, D, E, FF, G, H, I, J, K, R](f: (A, B, C, D, E, FF, G, H, I, J, K) => R): (F[A], F[B], F[C], F[D], F[E], F[FF], F[G], F[H], F[I], F[J], F[K]) => F[R]
    Definition Classes
    Apply
  68. def lift12[A, B, C, D, E, FF, G, H, I, J, K, L, R](f: (A, B, C, D, E, FF, G, H, I, J, K, L) => R): (F[A], F[B], F[C], F[D], F[E], F[FF], F[G], F[H], F[I], F[J], F[K], F[L]) => F[R]
    Definition Classes
    Apply
  69. def lift2[A, B, C](f: (A, B) => C): (F[A], F[B]) => F[C]
    Definition Classes
    Apply
  70. def lift3[A, B, C, D](f: (A, B, C) => D): (F[A], F[B], F[C]) => F[D]
    Definition Classes
    Apply
  71. def lift4[A, B, C, D, E](f: (A, B, C, D) => E): (F[A], F[B], F[C], F[D]) => F[E]
    Definition Classes
    Apply
  72. def lift5[A, B, C, D, E, R](f: (A, B, C, D, E) => R): (F[A], F[B], F[C], F[D], F[E]) => F[R]
    Definition Classes
    Apply
  73. def lift6[A, B, C, D, E, FF, R](f: (A, B, C, D, E, FF) => R): (F[A], F[B], F[C], F[D], F[E], F[FF]) => F[R]
    Definition Classes
    Apply
  74. def lift7[A, B, C, D, E, FF, G, R](f: (A, B, C, D, E, FF, G) => R): (F[A], F[B], F[C], F[D], F[E], F[FF], F[G]) => F[R]
    Definition Classes
    Apply
  75. def lift8[A, B, C, D, E, FF, G, H, R](f: (A, B, C, D, E, FF, G, H) => R): (F[A], F[B], F[C], F[D], F[E], F[FF], F[G], F[H]) => F[R]
    Definition Classes
    Apply
  76. def lift9[A, B, C, D, E, FF, G, H, I, R](f: (A, B, C, D, E, FF, G, H, I) => R): (F[A], F[B], F[C], F[D], F[E], F[FF], F[G], F[H], F[I]) => F[R]
    Definition Classes
    Apply
  77. def liftReducer[A, B](implicit r: Reducer[A, B]): Reducer[F[A], F[B]]
    Definition Classes
    Apply
  78. def map[A, B](fa: F[A])(f: (A) => B): F[B]

    Lift f into F and apply to F[A].

    Lift f into F and apply to F[A].

    Definition Classes
    IsomorphismFunctorFunctor
  79. def mapply[A, B](a: A)(f: F[(A) => B]): F[B]

    Lift apply(a), and apply the result to f.

    Lift apply(a), and apply the result to f.

    Definition Classes
    Functor
  80. def monoid[A]: Monoid[F[A]]
    Definition Classes
    PlusEmpty
  81. final def ne(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  82. final def notify(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  83. final def notifyAll(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  84. def par: Par[F]

    A lawful implementation of this that is isomorphic up to the methods defined on Applicative allowing for optimised parallel implementations that would otherwise violate laws of more specific typeclasses (e.g.

    A lawful implementation of this that is isomorphic up to the methods defined on Applicative allowing for optimised parallel implementations that would otherwise violate laws of more specific typeclasses (e.g. Monad).

    Definition Classes
    Applicative
  85. def plus[A](a: F[A], b: => F[A]): F[A]
    Definition Classes
    IsomorphismPlusPlus
  86. def plusA[A](x: => F[A], y: => F[A])(implicit sa: Semigroup[A]): F[A]

    Semigroups can be added within an Applicative

    Semigroups can be added within an Applicative

    Definition Classes
    Applicative
  87. def plusEmptyLaw: EmptyLaw
    Definition Classes
    PlusEmpty
  88. val plusEmptySyntax: PlusEmptySyntax[F]
    Definition Classes
    PlusEmpty
  89. def plusLaw: PlusLaw
    Definition Classes
    Plus
  90. val plusSyntax: PlusSyntax[F]
    Definition Classes
    Plus
  91. def point[A](a: => A): F[A]
    Definition Classes
    IsomorphismApplicativeApplicative
  92. def product[G[_]](implicit G0: ApplicativePlus[G]): ApplicativePlus[[α](F[α], G[α])]

    The product of ApplicativePlus F and G, [x](F[x], G[x]]), is a ApplicativePlus

    The product of ApplicativePlus F and G, [x](F[x], G[x]]), is a ApplicativePlus

    Definition Classes
    ApplicativePlus
  93. def product[G[_]](implicit G0: PlusEmpty[G]): PlusEmpty[[α](F[α], G[α])]

    The product of PlusEmpty F and G, [x](F[x], G[x]]), is a PlusEmpty

    The product of PlusEmpty F and G, [x](F[x], G[x]]), is a PlusEmpty

    Definition Classes
    PlusEmpty
  94. def product[G[_]](implicit G0: Plus[G]): Plus[[α](F[α], G[α])]

    The product of Plus F and G, [x](F[x], G[x]]), is a Plus

    The product of Plus F and G, [x](F[x], G[x]]), is a Plus

    Definition Classes
    Plus
  95. def product[G[_]](implicit G0: Applicative[G]): Applicative[[α](F[α], G[α])]

    The product of Applicatives F and G, [x](F[x], G[x]]), is an Applicative

    The product of Applicatives F and G, [x](F[x], G[x]]), is an Applicative

    Definition Classes
    Applicative
  96. def product[G[_]](implicit G0: Apply[G]): Apply[[α](F[α], G[α])]

    The product of Applys F and G, [x](F[x], G[x]]), is a Apply

    The product of Applys F and G, [x](F[x], G[x]]), is a Apply

    Definition Classes
    Apply
  97. def product[G[_]](implicit G0: Functor[G]): Functor[[α](F[α], G[α])]

    The product of Functors F and G, [x](F[x], G[x]]), is a Functor

    The product of Functors F and G, [x](F[x], G[x]]), is a Functor

    Definition Classes
    Functor
  98. final def pure[A](a: => A): F[A]
    Definition Classes
    Applicative
  99. def replicateM[A](n: Int, fa: F[A]): F[IList[A]]

    Performs the action n times, returning the list of results.

    Performs the action n times, returning the list of results.

    Definition Classes
    Applicative
  100. def replicateM_[A](n: Int, fa: F[A]): F[Unit]

    Performs the action n times, returning nothing.

    Performs the action n times, returning nothing.

    Definition Classes
    Applicative
  101. def semigroup[A]: Semigroup[F[A]]
    Definition Classes
    Plus
  102. def sequence[A, G[_]](as: G[F[A]])(implicit arg0: Traverse[G]): F[G[A]]
    Definition Classes
    Applicative
  103. def sequence1[A, G[_]](as: G[F[A]])(implicit arg0: Traverse1[G]): F[G[A]]
    Definition Classes
    Apply
  104. def strengthL[A, B](a: A, f: F[B]): F[(A, B)]

    Inject a to the left of Bs in f.

    Inject a to the left of Bs in f.

    Definition Classes
    Functor
  105. def strengthR[A, B](f: F[A], b: B): F[(A, B)]

    Inject b to the right of As in f.

    Inject b to the right of As in f.

    Definition Classes
    Functor
  106. final def synchronized[T0](arg0: => T0): T0
    Definition Classes
    AnyRef
  107. def toString(): String
    Definition Classes
    AnyRef → Any
  108. def traverse[A, G[_], B](value: G[A])(f: (A) => F[B])(implicit G: Traverse[G]): F[G[B]]
    Definition Classes
    Applicative
  109. def traverse1[A, G[_], B](value: G[A])(f: (A) => F[B])(implicit G: Traverse1[G]): F[G[B]]
    Definition Classes
    Apply
  110. def tuple2[A, B](fa: => F[A], fb: => F[B]): F[(A, B)]
    Definition Classes
    Apply
  111. def tuple3[A, B, C](fa: => F[A], fb: => F[B], fc: => F[C]): F[(A, B, C)]
    Definition Classes
    Apply
  112. def tuple4[A, B, C, D](fa: => F[A], fb: => F[B], fc: => F[C], fd: => F[D]): F[(A, B, C, D)]
    Definition Classes
    Apply
  113. def tuple5[A, B, C, D, E](fa: => F[A], fb: => F[B], fc: => F[C], fd: => F[D], fe: => F[E]): F[(A, B, C, D, E)]
    Definition Classes
    Apply
  114. def unfoldlPsum[S, A](seed: S)(f: (S) => Maybe[(S, F[A])]): F[A]
    Definition Classes
    PlusEmpty
  115. def unfoldlPsumOpt[S, A](seed: S)(f: (S) => Maybe[(S, F[A])]): Maybe[F[A]]

    Unfold seed to the left and sum using #plus.

    Unfold seed to the left and sum using #plus. Plus instances with right absorbing elements may override this method to not unfold more than is necessary to determine the result.

    Definition Classes
    Plus
  116. def unfoldrOpt[S, A, B](seed: S)(f: (S) => Maybe[(F[A], S)])(implicit R: Reducer[A, B]): Maybe[F[B]]

    Unfold seed to the right and combine effects left-to-right, using the given Reducer to combine values.

    Unfold seed to the right and combine effects left-to-right, using the given Reducer to combine values. Implementations may override this method to not unfold more than is necessary to determine the result.

    Definition Classes
    Apply
  117. def unfoldrPsum[S, A](seed: S)(f: (S) => Maybe[(F[A], S)]): F[A]
    Definition Classes
    PlusEmpty
  118. def unfoldrPsumOpt[S, A](seed: S)(f: (S) => Maybe[(F[A], S)]): Maybe[F[A]]

    Unfold seed to the right and sum using #plus.

    Unfold seed to the right and sum using #plus. Plus instances with left absorbing elements may override this method to not unfold more than is necessary to determine the result.

    Definition Classes
    Plus
  119. def unlessM[A](cond: Boolean)(f: => F[A]): F[Unit]

    Returns the given argument if cond is false, otherwise, unit lifted into F.

    Returns the given argument if cond is false, otherwise, unit lifted into F.

    Definition Classes
    Applicative
  120. def void[A](fa: F[A]): F[Unit]

    Empty fa of meaningful pure values, preserving its structure.

    Empty fa of meaningful pure values, preserving its structure.

    Definition Classes
    Functor
  121. final def wait(): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws(classOf[java.lang.InterruptedException])
  122. final def wait(arg0: Long, arg1: Int): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws(classOf[java.lang.InterruptedException])
  123. final def wait(arg0: Long): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws(classOf[java.lang.InterruptedException]) @native()
  124. def whenM[A](cond: Boolean)(f: => F[A]): F[Unit]

    Returns the given argument if cond is true, otherwise, unit lifted into F.

    Returns the given argument if cond is true, otherwise, unit lifted into F.

    Definition Classes
    Applicative
  125. def widen[A, B](fa: F[A])(implicit ev: <~<[A, B]): F[B]

    Functors are covariant by nature, so we can treat an F[A] as an F[B] if A is a subtype of B.

    Functors are covariant by nature, so we can treat an F[A] as an F[B] if A is a subtype of B.

    Definition Classes
    Functor
  126. final def xderiving0[Z](z: => Z): F[Z]
    Definition Classes
    InvariantApplicative
  127. final def xderiving1[Z, A1](f: (A1) => Z, g: (Z) => A1)(implicit a1: F[A1]): F[Z]
    Definition Classes
    InvariantApplicative
  128. final def xderiving2[Z, A1, A2](f: (A1, A2) => Z, g: (Z) => (A1, A2))(implicit a1: F[A1], a2: F[A2]): F[Z]
    Definition Classes
    InvariantApplicative
  129. final def xderiving3[Z, A1, A2, A3](f: (A1, A2, A3) => Z, g: (Z) => (A1, A2, A3))(implicit a1: F[A1], a2: F[A2], a3: F[A3]): F[Z]
    Definition Classes
    InvariantApplicative
  130. final def xderiving4[Z, A1, A2, A3, A4](f: (A1, A2, A3, A4) => Z, g: (Z) => (A1, A2, A3, A4))(implicit a1: F[A1], a2: F[A2], a3: F[A3], a4: F[A4]): F[Z]
    Definition Classes
    InvariantApplicative
  131. def xmap[A, B](ma: F[A], f: (A) => B, g: (B) => A): F[B]

    Converts ma to a value of type F[B] using the provided functions f and g.

    Converts ma to a value of type F[B] using the provided functions f and g.

    Definition Classes
    IsomorphismInvariantFunctorInvariantFunctor
  132. def xmapb[A, B](ma: F[A])(b: Bijection[A, B]): F[B]

    Converts ma to a value of type F[B] using the provided bijection.

    Converts ma to a value of type F[B] using the provided bijection.

    Definition Classes
    InvariantFunctor
  133. def xmapi[A, B](ma: F[A])(iso: Isomorphism.<=>[A, B]): F[B]

    Converts ma to a value of type F[B] using the provided isomorphism.

    Converts ma to a value of type F[B] using the provided isomorphism.

    Definition Classes
    InvariantFunctor
  134. def xproduct0[Z](z: => Z): F[Z]
  135. def xproduct1[Z, A1](a1: => F[A1])(f: (A1) => Z, g: (Z) => A1): F[Z]
  136. def xproduct2[Z, A1, A2](a1: => F[A1], a2: => F[A2])(f: (A1, A2) => Z, g: (Z) => (A1, A2)): F[Z]
  137. def xproduct3[Z, A1, A2, A3](a1: => F[A1], a2: => F[A2], a3: => F[A3])(f: (A1, A2, A3) => Z, g: (Z) => (A1, A2, A3)): F[Z]
  138. def xproduct4[Z, A1, A2, A3, A4](a1: => F[A1], a2: => F[A2], a3: => F[A3], a4: => F[A4])(f: (A1, A2, A3, A4) => Z, g: (Z) => (A1, A2, A3, A4)): F[Z]

Inherited from IsomorphismPlusEmpty[F, G]

Inherited from IsomorphismPlus[F, G]

Inherited from IsomorphismApplicative[F, G]

Inherited from IsomorphismInvariantApplicative[F, G]

Inherited from IsomorphismApply[F, G]

Inherited from IsomorphismFunctor[F, G]

Inherited from IsomorphismInvariantFunctor[F, G]

Inherited from ApplicativePlus[F]

Inherited from PlusEmpty[F]

Inherited from Plus[F]

Inherited from Applicative[F]

Inherited from InvariantApplicative[F]

Inherited from Apply[F]

Inherited from Functor[F]

Inherited from InvariantFunctor[F]

Inherited from AnyRef

Inherited from Any

Ungrouped