Trait/Object

cats.laws

ComonadLaws

Related Docs: object ComonadLaws | package laws

Permalink

trait ComonadLaws[F[_]] extends CoflatMapLaws[F]

Laws that must be obeyed by any Comonad.

Linear Supertypes
Ordering
  1. Alphabetic
  2. By inheritance
Inherited
  1. ComonadLaws
  2. CoflatMapLaws
  3. FunctorLaws
  4. InvariantLaws
  5. AnyRef
  6. Any
  1. Hide All
  2. Show all
Visibility
  1. Public
  2. All

Abstract Value Members

  1. implicit abstract def F: Comonad[F]

    Permalink
    Definition Classes
    ComonadLawsCoflatMapLawsFunctorLawsInvariantLaws

Concrete Value Members

  1. final def !=(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  4. final def asInstanceOf[T0]: T0

    Permalink
    Definition Classes
    Any
  5. def clone(): AnyRef

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  6. def coflatMapAssociativity[A, B, C](fa: F[A], f: (F[A]) ⇒ B, g: (F[B]) ⇒ C): IsEq[F[C]]

    Permalink
    Definition Classes
    CoflatMapLaws
  7. def coflatMapIdentity[A, B](fa: F[A]): IsEq[F[F[A]]]

    Permalink
  8. def coflattenCoherence[A, B](fa: F[A], f: (F[A]) ⇒ B): IsEq[F[B]]

    Permalink
  9. def coflattenThroughMap[A](fa: F[A]): IsEq[F[F[F[A]]]]

    Permalink
  10. def cokleisliAssociativity[A, B, C, D](f: (F[A]) ⇒ B, g: (F[B]) ⇒ C, h: (F[C]) ⇒ D, fa: F[A]): IsEq[D]

    Permalink

    The composition of cats.data.Cokleisli arrows is associative.

    The composition of cats.data.Cokleisli arrows is associative. This is analogous to coflatMapAssociativity.

    Definition Classes
    CoflatMapLaws
  11. def cokleisliLeftIdentity[A, B](fa: F[A], f: (F[A]) ⇒ B): IsEq[B]

    Permalink

    extract is the left identity element under left-to-right composition of cats.data.Cokleisli arrows.

    extract is the left identity element under left-to-right composition of cats.data.Cokleisli arrows. This is analogous to comonadLeftIdentity.

  12. def cokleisliRightIdentity[A, B](fa: F[A], f: (F[A]) ⇒ B): IsEq[B]

    Permalink

    extract is the right identity element under left-to-right composition of cats.data.Cokleisli arrows.

    extract is the right identity element under left-to-right composition of cats.data.Cokleisli arrows. This is analogous to comonadRightIdentity.

  13. def comonadLeftIdentity[A](fa: F[A]): IsEq[F[A]]

    Permalink
  14. def comonadRightIdentity[A, B](fa: F[A], f: (F[A]) ⇒ B): IsEq[B]

    Permalink
  15. def covariantComposition[A, B, C](fa: F[A], f: (A) ⇒ B, g: (B) ⇒ C): IsEq[F[C]]

    Permalink
    Definition Classes
    FunctorLaws
  16. def covariantIdentity[A](fa: F[A]): IsEq[F[A]]

    Permalink
    Definition Classes
    FunctorLaws
  17. final def eq(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  18. def equals(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  19. def extractCoflattenIdentity[A](fa: F[A]): IsEq[F[A]]

    Permalink
  20. def finalize(): Unit

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  21. final def getClass(): Class[_]

    Permalink
    Definition Classes
    AnyRef → Any
  22. def hashCode(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  23. def invariantComposition[A, B, C](fa: F[A], f1: (A) ⇒ B, f2: (B) ⇒ A, g1: (B) ⇒ C, g2: (C) ⇒ B): IsEq[F[C]]

    Permalink
    Definition Classes
    InvariantLaws
  24. def invariantIdentity[A](fa: F[A]): IsEq[F[A]]

    Permalink
    Definition Classes
    InvariantLaws
  25. final def isInstanceOf[T0]: Boolean

    Permalink
    Definition Classes
    Any
  26. def mapCoflatMapCoherence[A, B](fa: F[A], f: (A) ⇒ B): IsEq[F[B]]

    Permalink
  27. def mapCoflattenIdentity[A](fa: F[A]): IsEq[F[A]]

    Permalink
  28. final def ne(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  29. final def notify(): Unit

    Permalink
    Definition Classes
    AnyRef
  30. final def notifyAll(): Unit

    Permalink
    Definition Classes
    AnyRef
  31. final def synchronized[T0](arg0: ⇒ T0): T0

    Permalink
    Definition Classes
    AnyRef
  32. def toString(): String

    Permalink
    Definition Classes
    AnyRef → Any
  33. final def wait(): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  34. final def wait(arg0: Long, arg1: Int): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  35. final def wait(arg0: Long): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from CoflatMapLaws[F]

Inherited from FunctorLaws[F]

Inherited from InvariantLaws[F]

Inherited from AnyRef

Inherited from Any

Ungrouped