Trait/Object

cats.laws

MonadLaws

Related Docs: object MonadLaws | package laws

Permalink

trait MonadLaws[F[_]] extends ApplicativeLaws[F] with FlatMapLaws[F]

Laws that must be obeyed by any Monad.

Linear Supertypes
Known Subclasses
Ordering
  1. Alphabetic
  2. By inheritance
Inherited
  1. MonadLaws
  2. FlatMapLaws
  3. ApplicativeLaws
  4. ApplyLaws
  5. FunctorLaws
  6. InvariantLaws
  7. AnyRef
  8. Any
  1. Hide All
  2. Show all
Visibility
  1. Public
  2. All

Abstract Value Members

  1. implicit abstract def F: Monad[F]

    Permalink

Concrete Value Members

  1. final def !=(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  4. def applicativeComposition[A, B, C](fa: F[A], fab: F[(A) ⇒ B], fbc: F[(B) ⇒ C]): IsEq[F[C]]

    Permalink

    This law is applyComposition stated in terms of pure.

    This law is applyComposition stated in terms of pure. It is a combination of applyComposition and applicativeMap and hence not strictly necessary.

    Definition Classes
    ApplicativeLaws
  5. def applicativeHomomorphism[A, B](a: A, f: (A) ⇒ B): IsEq[F[B]]

    Permalink
    Definition Classes
    ApplicativeLaws
  6. def applicativeIdentity[A](fa: F[A]): IsEq[F[A]]

    Permalink
    Definition Classes
    ApplicativeLaws
  7. def applicativeInterchange[A, B](a: A, ff: F[(A) ⇒ B]): IsEq[F[B]]

    Permalink
    Definition Classes
    ApplicativeLaws
  8. def applicativeMap[A, B](fa: F[A], f: (A) ⇒ B): IsEq[F[B]]

    Permalink
    Definition Classes
    ApplicativeLaws
  9. def applyComposition[A, B, C](fa: F[A], fab: F[(A) ⇒ B], fbc: F[(B) ⇒ C]): IsEq[F[C]]

    Permalink
    Definition Classes
    ApplyLaws
  10. final def asInstanceOf[T0]: T0

    Permalink
    Definition Classes
    Any
  11. def clone(): AnyRef

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  12. def covariantComposition[A, B, C](fa: F[A], f: (A) ⇒ B, g: (B) ⇒ C): IsEq[F[C]]

    Permalink
    Definition Classes
    FunctorLaws
  13. def covariantIdentity[A](fa: F[A]): IsEq[F[A]]

    Permalink
    Definition Classes
    FunctorLaws
  14. final def eq(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  15. def equals(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  16. def finalize(): Unit

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  17. def flatMapAssociativity[A, B, C](fa: F[A], f: (A) ⇒ F[B], g: (B) ⇒ F[C]): IsEq[F[C]]

    Permalink
    Definition Classes
    FlatMapLaws
  18. def flatMapConsistentApply[A, B](fa: F[A], fab: F[(A) ⇒ B]): IsEq[F[B]]

    Permalink
    Definition Classes
    FlatMapLaws
  19. final def getClass(): Class[_]

    Permalink
    Definition Classes
    AnyRef → Any
  20. def hashCode(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  21. def invariantComposition[A, B, C](fa: F[A], f1: (A) ⇒ B, f2: (B) ⇒ A, g1: (B) ⇒ C, g2: (C) ⇒ B): IsEq[F[C]]

    Permalink
    Definition Classes
    InvariantLaws
  22. def invariantIdentity[A](fa: F[A]): IsEq[F[A]]

    Permalink
    Definition Classes
    InvariantLaws
  23. final def isInstanceOf[T0]: Boolean

    Permalink
    Definition Classes
    Any
  24. def kleisliAssociativity[A, B, C, D](f: (A) ⇒ F[B], g: (B) ⇒ F[C], h: (C) ⇒ F[D], a: A): IsEq[F[D]]

    Permalink

    The composition of cats.data.Kleisli arrows is associative.

    The composition of cats.data.Kleisli arrows is associative. This is analogous to flatMapAssociativity.

    Definition Classes
    FlatMapLaws
  25. def kleisliLeftIdentity[A, B](a: A, f: (A) ⇒ F[B]): IsEq[F[B]]

    Permalink

    pure is the left identity element under left-to-right composition of cats.data.Kleisli arrows.

    pure is the left identity element under left-to-right composition of cats.data.Kleisli arrows. This is analogous to monadLeftIdentity.

  26. def kleisliRightIdentity[A, B](a: A, f: (A) ⇒ F[B]): IsEq[F[B]]

    Permalink

    pure is the right identity element under left-to-right composition of cats.data.Kleisli arrows.

    pure is the right identity element under left-to-right composition of cats.data.Kleisli arrows. This is analogous to monadRightIdentity.

  27. def monadLeftIdentity[A, B](a: A, f: (A) ⇒ F[B]): IsEq[F[B]]

    Permalink
  28. def monadRightIdentity[A](fa: F[A]): IsEq[F[A]]

    Permalink
  29. final def ne(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  30. final def notify(): Unit

    Permalink
    Definition Classes
    AnyRef
  31. final def notifyAll(): Unit

    Permalink
    Definition Classes
    AnyRef
  32. final def synchronized[T0](arg0: ⇒ T0): T0

    Permalink
    Definition Classes
    AnyRef
  33. def toString(): String

    Permalink
    Definition Classes
    AnyRef → Any
  34. final def wait(): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  35. final def wait(arg0: Long, arg1: Int): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  36. final def wait(arg0: Long): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from FlatMapLaws[F]

Inherited from ApplicativeLaws[F]

Inherited from ApplyLaws[F]

Inherited from FunctorLaws[F]

Inherited from InvariantLaws[F]

Inherited from AnyRef

Inherited from Any

Ungrouped