| Modifier and Type | Class and Description | 
|---|---|
static class  | 
StatelessMultinomial.Inputs  | 
| Modifier and Type | Field and Description | 
|---|---|
static String | 
OP_NAME
The name of this op, as known by TensorFlow core engine 
 | 
| Constructor and Description | 
|---|
StatelessMultinomial(Operation operation)  | 
| Modifier and Type | Method and Description | 
|---|---|
Output<V> | 
asOutput()
Returns the symbolic handle of the tensor. 
 | 
static StatelessMultinomial<TInt64> | 
create(Scope scope,
      Operand<? extends TNumber> logits,
      Operand<TInt32> numSamples,
      Operand<? extends TNumber> seed)
Factory method to create a class wrapping a new StatelessMultinomial operation, with the default output types. 
 | 
static <V extends TNumber> | 
create(Scope scope,
      Operand<? extends TNumber> logits,
      Operand<TInt32> numSamples,
      Operand<? extends TNumber> seed,
      Class<V> outputDtype)
Factory method to create a class wrapping a new StatelessMultinomial operation. 
 | 
Output<V> | 
output()
Gets output. 
 | 
public static final String OP_NAME
public StatelessMultinomial(Operation operation)
@Endpoint(describeByClass=true) public static <V extends TNumber> StatelessMultinomial<V> create(Scope scope, Operand<? extends TNumber> logits, Operand<TInt32> numSamples, Operand<? extends TNumber> seed, Class<V> outputDtype)
V - data type for StatelessMultinomial output and operandsscope - current scopelogits - 2-D Tensor with shape [batch_size, num_classes].  Each slice [i, :]
 represents the unnormalized log probabilities for all classes.numSamples - 0-D.  Number of independent samples to draw for each row slice.seed - 2 seeds (shape [2]).outputDtype - The value of the outputDtype attribute@Endpoint(describeByClass=true) public static StatelessMultinomial<TInt64> create(Scope scope, Operand<? extends TNumber> logits, Operand<TInt32> numSamples, Operand<? extends TNumber> seed)
scope - current scopelogits - 2-D Tensor with shape [batch_size, num_classes].  Each slice [i, :]
 represents the unnormalized log probabilities for all classes.numSamples - 0-D.  Number of independent samples to draw for each row slice.seed - 2 seeds (shape [2]).public Output<V> output()
[batch_size, num_samples].  Each slice [i, :]
 contains the drawn class labels with range [0, num_classes).public Output<V> asOutput()
OperandInputs to TensorFlow operations are outputs of another TensorFlow operation. This method is used to obtain a symbolic handle that represents the computation of the input.
asOutput in interface Operand<V extends TNumber>OperationBuilder.addInput(Output)Copyright © 2015–2022. All rights reserved.