trait Alternative[F[_]] extends NonEmptyAlternative[F] with MonoidK[F]
- Grouped
- Alphabetic
- By Inheritance
- Alternative
- MonoidK
- NonEmptyAlternative
- SemigroupK
- Applicative
- InvariantMonoidal
- Apply
- ApplyArityFunctions
- InvariantSemigroupal
- Semigroupal
- Functor
- Invariant
- Serializable
- AnyRef
- Any
- Hide All
- Show All
- Public
- Protected
Abstract Value Members
- abstract def ap[A, B](ff: F[(A) => B])(fa: F[A]): F[B]
Given a value and a function in the Apply context, applies the function to the value.
Given a value and a function in the Apply context, applies the function to the value.
Example:
scala> import cats.implicits._ scala> val someF: Option[Int => Long] = Some(_.toLong + 1L) scala> val noneF: Option[Int => Long] = None scala> val someInt: Option[Int] = Some(3) scala> val noneInt: Option[Int] = None scala> Apply[Option].ap(someF)(someInt) res0: Option[Long] = Some(4) scala> Apply[Option].ap(noneF)(someInt) res1: Option[Long] = None scala> Apply[Option].ap(someF)(noneInt) res2: Option[Long] = None scala> Apply[Option].ap(noneF)(noneInt) res3: Option[Long] = None
- Definition Classes
- Apply
- abstract def combineK[A](x: F[A], y: F[A]): F[A]
Combine two F[A] values.
Combine two F[A] values.
Example:
scala> import cats.implicits._ scala> SemigroupK[List].combineK(List(1, 2), List(3, 4)) res0: List[Int] = List(1, 2, 3, 4)
- Definition Classes
- SemigroupK
- abstract def empty[A]: F[A]
Given a type A, create an "empty" F[A] value.
Given a type A, create an "empty" F[A] value.
Example:
scala> import cats.implicits._ scala> MonoidK[List].empty[Long] res0: List[Long] = List()
- Definition Classes
- MonoidK
- abstract def pure[A](x: A): F[A]
pure
lifts any value into the Applicative Functor.pure
lifts any value into the Applicative Functor.Example:
scala> import cats.implicits._ scala> Applicative[Option].pure(10) res0: Option[Int] = Some(10)
- Definition Classes
- Applicative
Concrete Value Members
- final def !=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- final def ##: Int
- Definition Classes
- AnyRef → Any
- final def *>[A, B](fa: F[A])(fb: F[B]): F[B]
Alias for productR.
- final def <*[A, B](fa: F[A])(fb: F[B]): F[A]
Alias for productL.
- final def <*>[A, B](ff: F[(A) => B])(fa: F[A]): F[B]
Alias for ap.
- final def ==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- def algebra[A]: Monoid[F[A]]
Given a type A, create a concrete Monoid[F[A]].
Given a type A, create a concrete Monoid[F[A]].
Example:
scala> import cats.implicits._ scala> MonoidK[List].algebra[Long].empty res0: List[Long] = List()
- Definition Classes
- MonoidK → SemigroupK
- def ap10[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9]): F[Z]
- Definition Classes
- ApplyArityFunctions
- def ap11[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10]): F[Z]
- Definition Classes
- ApplyArityFunctions
- def ap12[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11]): F[Z]
- Definition Classes
- ApplyArityFunctions
- def ap13[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12]): F[Z]
- Definition Classes
- ApplyArityFunctions
- def ap14[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13]): F[Z]
- Definition Classes
- ApplyArityFunctions
- def ap15[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14]): F[Z]
- Definition Classes
- ApplyArityFunctions
- def ap16[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15]): F[Z]
- Definition Classes
- ApplyArityFunctions
- def ap17[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16]): F[Z]
- Definition Classes
- ApplyArityFunctions
- def ap18[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17]): F[Z]
- Definition Classes
- ApplyArityFunctions
- def ap19[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18]): F[Z]
- Definition Classes
- ApplyArityFunctions
- def ap2[A, B, Z](ff: F[(A, B) => Z])(fa: F[A], fb: F[B]): F[Z]
ap2 is a binary version of ap, defined in terms of ap.
ap2 is a binary version of ap, defined in terms of ap.
- Definition Classes
- Apply
- def ap20[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19]): F[Z]
- Definition Classes
- ApplyArityFunctions
- def ap21[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19], f20: F[A20]): F[Z]
- Definition Classes
- ApplyArityFunctions
- def ap22[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, A21, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, A21) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19], f20: F[A20], f21: F[A21]): F[Z]
- Definition Classes
- ApplyArityFunctions
- def ap3[A0, A1, A2, Z](f: F[(A0, A1, A2) => Z])(f0: F[A0], f1: F[A1], f2: F[A2]): F[Z]
- Definition Classes
- ApplyArityFunctions
- def ap4[A0, A1, A2, A3, Z](f: F[(A0, A1, A2, A3) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3]): F[Z]
- Definition Classes
- ApplyArityFunctions
- def ap5[A0, A1, A2, A3, A4, Z](f: F[(A0, A1, A2, A3, A4) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4]): F[Z]
- Definition Classes
- ApplyArityFunctions
- def ap6[A0, A1, A2, A3, A4, A5, Z](f: F[(A0, A1, A2, A3, A4, A5) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5]): F[Z]
- Definition Classes
- ApplyArityFunctions
- def ap7[A0, A1, A2, A3, A4, A5, A6, Z](f: F[(A0, A1, A2, A3, A4, A5, A6) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6]): F[Z]
- Definition Classes
- ApplyArityFunctions
- def ap8[A0, A1, A2, A3, A4, A5, A6, A7, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7]): F[Z]
- Definition Classes
- ApplyArityFunctions
- def ap9[A0, A1, A2, A3, A4, A5, A6, A7, A8, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8]): F[Z]
- Definition Classes
- ApplyArityFunctions
- def appendK[A](fa: F[A], a: A): F[A]
Lift
a
intoF[_]
and append it tofa
.Lift
a
intoF[_]
and append it tofa
.Example:
scala> NonEmptyAlternative[List].appendK(List(1, 2, 3), 4) res0: List[Int] = List(1, 2, 3, 4)
- Definition Classes
- NonEmptyAlternative
- def as[A, B](fa: F[A], b: B): F[B]
Replaces the
A
value inF[A]
with the supplied value.Replaces the
A
value inF[A]
with the supplied value.Example:
scala> import cats.Functor scala> import cats.implicits.catsStdInstancesForList scala> Functor[List].as(List(1,2,3), "hello") res0: List[String] = List(hello, hello, hello)
- Definition Classes
- Functor
- final def asInstanceOf[T0]: T0
- Definition Classes
- Any
- def clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.CloneNotSupportedException]) @native()
- def combineAllK[A](as: IterableOnce[F[A]]): F[A]
Given a sequence of
as
, sum them using the monoidK and return the total.Given a sequence of
as
, sum them using the monoidK and return the total.Example:
scala> MonoidK[List].combineAllK(List(List("One"), List("Two"), List("Three"))) res0: List[String] = List(One, Two, Three) scala> MonoidK[List].combineAllK[String](List.empty) res1: List[String] = List()
- Definition Classes
- MonoidK
- def combineAllOptionK[A](as: IterableOnce[F[A]]): Option[F[A]]
Given a sequence of
as
, combine them and return the total.Given a sequence of
as
, combine them and return the total.If the sequence is empty, returns None. Otherwise, returns Some(total).
Example:
scala> SemigroupK[List].combineAllOptionK(List(List("One"), List("Two"), List("Three"))) res0: Option[List[String]] = Some(List(One, Two, Three)) scala> SemigroupK[List].combineAllOptionK[String](List.empty) res1: Option[List[String]] = None
- Definition Classes
- SemigroupK
- def combineKEval[A](x: F[A], y: Eval[F[A]]): Eval[F[A]]
Similar to combineK but uses Eval to allow for laziness in the second argument.
Similar to combineK but uses Eval to allow for laziness in the second argument. This can allow for "short-circuiting" of computations.
NOTE: the default implementation of
combineKEval
does not short-circuit computations. For data structures that can benefit from laziness, SemigroupK instances should override this method.In the following example,
x.combineK(bomb)
would result in an error, butcombineKEval
"short-circuits" the computation.x
isSome
and thus the result ofbomb
doesn't even need to be evaluated in order to determine that the result ofcombineKEval
should bex
.scala> import cats.{Eval, Later} scala> import cats.implicits._ scala> val bomb: Eval[Option[Int]] = Later(sys.error("boom")) scala> val x: Option[Int] = Some(42) scala> x.combineKEval(bomb).value res0: Option[Int] = Some(42)
- Definition Classes
- SemigroupK
- def combineNK[A](a: F[A], n: Int): F[A]
Return
a
combined with itselfn
times.Return
a
combined with itselfn
times.Example:
scala> SemigroupK[List].combineNK(List(1), 5) res0: List[Int] = List(1, 1, 1, 1, 1) scala> MonoidK[List].combineNK(List("ha"), 0) res1: List[String] = List()
- Definition Classes
- MonoidK → SemigroupK
- def compose[G[_]](implicit arg0: Applicative[G]): Alternative[[α]F[G[α]]]
Compose an
Applicative[F]
and anApplicative[G]
into anApplicative[λ[α => F[G[α]]]]
.Compose an
Applicative[F]
and anApplicative[G]
into anApplicative[λ[α => F[G[α]]]]
.Example:
scala> import cats.implicits._ scala> val alo = Applicative[List].compose[Option] scala> alo.pure(3) res0: List[Option[Int]] = List(Some(3)) scala> alo.product(List(None, Some(true), Some(false)), List(Some(2), None)) res1: List[Option[(Boolean, Int)]] = List(None, None, Some((true,2)), None, Some((false,2)), None)
- Definition Classes
- Alternative → NonEmptyAlternative → Applicative
- def compose[G[_]]: MonoidK[[α]F[G[α]]]
Given a kind G, create an "composed" MonoidK[F[G[_]]
Given a kind G, create an "composed" MonoidK[F[G[_]]
Example:
scala> import cats.implicits._ scala> val monoidK = MonoidK[List].compose[Option] scala> monoidK.combineK(List(Some(1)), List(Some(2), None)) res0: List[Option[Int]] = List(Some(1), Some(2), None)
- Definition Classes
- MonoidK → SemigroupK
- def compose[G[_]](implicit arg0: Apply[G]): Apply[[α]F[G[α]]]
Compose an
Apply[F]
and anApply[G]
into anApply[λ[α => F[G[α]]]]
.Compose an
Apply[F]
and anApply[G]
into anApply[λ[α => F[G[α]]]]
.Example:
scala> import cats.implicits._ scala> val alo = Apply[List].compose[Option] scala> alo.product(List(None, Some(true), Some(false)), List(Some(2), None)) res1: List[Option[(Boolean, Int)]] = List(None, None, Some((true,2)), None, Some((false,2)), None)
- Definition Classes
- Apply
- def compose[G[_]](implicit arg0: Functor[G]): Functor[[α]F[G[α]]]
- Definition Classes
- Functor
- def compose[G[_]](implicit arg0: Invariant[G]): Invariant[[α]F[G[α]]]
Compose Invariant
F[_]
andG[_]
then produceInvariant[F[G[_]]]
using theirimap
.Compose Invariant
F[_]
andG[_]
then produceInvariant[F[G[_]]]
using theirimap
.Example:
scala> import cats.implicits._ scala> import scala.concurrent.duration._ scala> val durSemigroupList: Semigroup[List[FiniteDuration]] = | Invariant[Semigroup].compose[List].imap(Semigroup[List[Long]])(Duration.fromNanos)(_.toNanos) scala> durSemigroupList.combine(List(2.seconds, 3.seconds), List(4.seconds)) res1: List[FiniteDuration] = List(2 seconds, 3 seconds, 4 seconds)
- Definition Classes
- Invariant
- def composeApply[G[_]](implicit arg0: Apply[G]): InvariantSemigroupal[[α]F[G[α]]]
- Definition Classes
- InvariantSemigroupal
- def composeContravariant[G[_]](implicit arg0: Contravariant[G]): Contravariant[[α]F[G[α]]]
Compose Invariant
F[_]
and ContravariantG[_]
then produceInvariant[F[G[_]]]
using F'simap
and G'scontramap
.Compose Invariant
F[_]
and ContravariantG[_]
then produceInvariant[F[G[_]]]
using F'simap
and G'scontramap
.Example:
scala> import cats.implicits._ scala> import scala.concurrent.duration._ scala> type ToInt[T] = T => Int scala> val durSemigroupToInt: Semigroup[ToInt[FiniteDuration]] = | Invariant[Semigroup] | .composeContravariant[ToInt] | .imap(Semigroup[ToInt[Long]])(Duration.fromNanos)(_.toNanos) // semantically equal to (2.seconds.toSeconds.toInt + 1) + (2.seconds.toSeconds.toInt * 2) = 7 scala> durSemigroupToInt.combine(_.toSeconds.toInt + 1, _.toSeconds.toInt * 2)(2.seconds) res1: Int = 7
- def composeContravariantMonoidal[G[_]](implicit arg0: ContravariantMonoidal[G]): ContravariantMonoidal[[α]F[G[α]]]
Compose an
Applicative[F]
and aContravariantMonoidal[G]
into aContravariantMonoidal[λ[α => F[G[α]]]]
.Compose an
Applicative[F]
and aContravariantMonoidal[G]
into aContravariantMonoidal[λ[α => F[G[α]]]]
.Example:
scala> import cats.kernel.Comparison scala> import cats.implicits._ // compares strings by alphabetical order scala> val alpha: Order[String] = Order[String] // compares strings by their length scala> val strLength: Order[String] = Order.by[String, Int](_.length) scala> val stringOrders: List[Order[String]] = List(alpha, strLength) // first comparison is with alpha order, second is with string length scala> stringOrders.map(o => o.comparison("abc", "de")) res0: List[Comparison] = List(LessThan, GreaterThan) scala> val le = Applicative[List].composeContravariantMonoidal[Order] // create Int orders that convert ints to strings and then use the string orders scala> val intOrders: List[Order[Int]] = le.contramap(stringOrders)(_.toString) // first comparison is with alpha order, second is with string length scala> intOrders.map(o => o.comparison(12, 3)) res1: List[Comparison] = List(LessThan, GreaterThan) // create the `product` of the string order list and the int order list // `p` contains a list of the following orders: // 1. (alpha comparison on strings followed by alpha comparison on ints) // 2. (alpha comparison on strings followed by length comparison on ints) // 3. (length comparison on strings followed by alpha comparison on ints) // 4. (length comparison on strings followed by length comparison on ints) scala> val p: List[Order[(String, Int)]] = le.product(stringOrders, intOrders) scala> p.map(o => o.comparison(("abc", 12), ("def", 3))) res2: List[Comparison] = List(LessThan, LessThan, LessThan, GreaterThan)
- Definition Classes
- Applicative
- def composeFunctor[G[_]](implicit arg0: Functor[G]): Invariant[[α]F[G[α]]]
Compose Invariant
F[_]
and FunctorG[_]
then produceInvariant[F[G[_]]]
using F'simap
and G'smap
.Compose Invariant
F[_]
and FunctorG[_]
then produceInvariant[F[G[_]]]
using F'simap
and G'smap
.Example:
scala> import cats.implicits._ scala> import scala.concurrent.duration._ scala> val durSemigroupList: Semigroup[List[FiniteDuration]] = | Invariant[Semigroup] | .composeFunctor[List] | .imap(Semigroup[List[Long]])(Duration.fromNanos)(_.toNanos) scala> durSemigroupList.combine(List(2.seconds, 3.seconds), List(4.seconds)) res1: List[FiniteDuration] = List(2 seconds, 3 seconds, 4 seconds)
- Definition Classes
- Invariant
- final def eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
- def equals(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef → Any
- def finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.Throwable])
- final def fmap[A, B](fa: F[A])(f: (A) => B): F[B]
Alias for map, since map can't be injected as syntax if the implementing type already had a built-in
.map
method.Alias for map, since map can't be injected as syntax if the implementing type already had a built-in
.map
method.Example:
scala> import cats.implicits._ scala> val m: Map[Int, String] = Map(1 -> "hi", 2 -> "there", 3 -> "you") scala> m.fmap(_ ++ "!") res0: Map[Int,String] = Map(1 -> hi!, 2 -> there!, 3 -> you!)
- Definition Classes
- Functor
- def fproduct[A, B](fa: F[A])(f: (A) => B): F[(A, B)]
Tuple the values in fa with the result of applying a function with the value
Tuple the values in fa with the result of applying a function with the value
Example:
scala> import cats.Functor scala> import cats.implicits.catsStdInstancesForOption scala> Functor[Option].fproduct(Option(42))(_.toString) res0: Option[(Int, String)] = Some((42,42))
- Definition Classes
- Functor
- def fproductLeft[A, B](fa: F[A])(f: (A) => B): F[(B, A)]
Pair the result of function application with
A
.Pair the result of function application with
A
.Example:
scala> import cats.Functor scala> import cats.implicits.catsStdInstancesForOption scala> Functor[Option].fproductLeft(Option(42))(_.toString) res0: Option[(String, Int)] = Some((42,42))
- Definition Classes
- Functor
- final def fromFoldable[G[_], A](as: G[A])(implicit arg0: Foldable[G]): F[A]
- def fromIterableOnce[A](as: IterableOnce[A]): F[A]
- final def getClass(): Class[_ <: AnyRef]
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
- def guard(condition: Boolean): F[Unit]
Return ().pure[F] if
condition
is true,empty
otherwiseReturn ().pure[F] if
condition
is true,empty
otherwiseExample:
scala> import cats.implicits._ scala> def even(i: Int): Option[String] = Alternative[Option].guard(i % 2 == 0).as("even") scala> even(2) res0: Option[String] = Some(even) scala> even(3) res1: Option[String] = None
- def hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
- def ifF[A](fb: F[Boolean])(ifTrue: => A, ifFalse: => A): F[A]
Lifts
if
to FunctorLifts
if
to FunctorExample:
scala> import cats.Functor scala> import cats.implicits.catsStdInstancesForList scala> Functor[List].ifF(List(true, false, false))(1, 0) res0: List[Int] = List(1, 0, 0)
- Definition Classes
- Functor
- def imap[A, B](fa: F[A])(f: (A) => B)(g: (B) => A): F[B]
Transform an
F[A]
into anF[B]
by providing a transformation fromA
toB
and one fromB
toA
.Transform an
F[A]
into anF[B]
by providing a transformation fromA
toB
and one fromB
toA
.Example:
scala> import cats.implicits._ scala> import scala.concurrent.duration._ scala> val durSemigroup: Semigroup[FiniteDuration] = | Invariant[Semigroup].imap(Semigroup[Long])(Duration.fromNanos)(_.toNanos) scala> durSemigroup.combine(2.seconds, 3.seconds) res1: FiniteDuration = 5 seconds
- def isEmpty[A](a: F[A])(implicit ev: Eq[F[A]]): Boolean
Tests if
a
is the identity.Tests if
a
is the identity.Example:
scala> MonoidK[List].isEmpty(List.empty[String]) res0: Boolean = true scala> MonoidK[List].isEmpty(List("something")) res1: Boolean = false
- Definition Classes
- MonoidK
- final def isInstanceOf[T0]: Boolean
- Definition Classes
- Any
- def lift[A, B](f: (A) => B): (F[A]) => F[B]
Lift a function f to operate on Functors
Lift a function f to operate on Functors
Example:
scala> import cats.Functor scala> import cats.implicits.catsStdInstancesForOption scala> val o = Option(42) scala> Functor[Option].lift((x: Int) => x + 10)(o) res0: Option[Int] = Some(52)
- Definition Classes
- Functor
- def map[A, B](fa: F[A])(f: (A) => B): F[B]
- Definition Classes
- Applicative → Functor
- def map10[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9) => Z): F[Z]
- Definition Classes
- ApplyArityFunctions
- def map11[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10) => Z): F[Z]
- Definition Classes
- ApplyArityFunctions
- def map12[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11) => Z): F[Z]
- Definition Classes
- ApplyArityFunctions
- def map13[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12) => Z): F[Z]
- Definition Classes
- ApplyArityFunctions
- def map14[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13) => Z): F[Z]
- Definition Classes
- ApplyArityFunctions
- def map15[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14) => Z): F[Z]
- Definition Classes
- ApplyArityFunctions
- def map16[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15) => Z): F[Z]
- Definition Classes
- ApplyArityFunctions
- def map17[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16) => Z): F[Z]
- Definition Classes
- ApplyArityFunctions
- def map18[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17) => Z): F[Z]
- Definition Classes
- ApplyArityFunctions
- def map19[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18) => Z): F[Z]
- Definition Classes
- ApplyArityFunctions
- def map2[A, B, Z](fa: F[A], fb: F[B])(f: (A, B) => Z): F[Z]
Applies the pure (binary) function f to the effectful values fa and fb.
Applies the pure (binary) function f to the effectful values fa and fb.
map2 can be seen as a binary version of cats.Functor#map.
Example:
scala> import cats.implicits._ scala> val someInt: Option[Int] = Some(3) scala> val noneInt: Option[Int] = None scala> val someLong: Option[Long] = Some(4L) scala> val noneLong: Option[Long] = None scala> Apply[Option].map2(someInt, someLong)((i, l) => i.toString + l.toString) res0: Option[String] = Some(34) scala> Apply[Option].map2(someInt, noneLong)((i, l) => i.toString + l.toString) res0: Option[String] = None scala> Apply[Option].map2(noneInt, noneLong)((i, l) => i.toString + l.toString) res0: Option[String] = None scala> Apply[Option].map2(noneInt, someLong)((i, l) => i.toString + l.toString) res0: Option[String] = None
- Definition Classes
- Apply
- def map20[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19) => Z): F[Z]
- Definition Classes
- ApplyArityFunctions
- def map21[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19], f20: F[A20])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20) => Z): F[Z]
- Definition Classes
- ApplyArityFunctions
- def map22[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, A21, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19], f20: F[A20], f21: F[A21])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, A21) => Z): F[Z]
- Definition Classes
- ApplyArityFunctions
- def map2Eval[A, B, Z](fa: F[A], fb: Eval[F[B]])(f: (A, B) => Z): Eval[F[Z]]
Similar to map2 but uses Eval to allow for laziness in the
F[B]
argument.Similar to map2 but uses Eval to allow for laziness in the
F[B]
argument. This can allow for "short-circuiting" of computations.NOTE: the default implementation of
map2Eval
does not short-circuit computations. For data structures that can benefit from laziness, Apply instances should override this method.In the following example,
x.map2(bomb)(_ + _)
would result in an error, butmap2Eval
"short-circuits" the computation.x
isNone
and thus the result ofbomb
doesn't even need to be evaluated in order to determine that the result ofmap2Eval
should beNone
.scala> import cats.{Eval, Later} scala> import cats.implicits._ scala> val bomb: Eval[Option[Int]] = Later(sys.error("boom")) scala> val x: Option[Int] = None scala> x.map2Eval(bomb)(_ + _).value res0: Option[Int] = None
- Definition Classes
- Apply
- def map3[A0, A1, A2, Z](f0: F[A0], f1: F[A1], f2: F[A2])(f: (A0, A1, A2) => Z): F[Z]
- Definition Classes
- ApplyArityFunctions
- def map4[A0, A1, A2, A3, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3])(f: (A0, A1, A2, A3) => Z): F[Z]
- Definition Classes
- ApplyArityFunctions
- def map5[A0, A1, A2, A3, A4, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4])(f: (A0, A1, A2, A3, A4) => Z): F[Z]
- Definition Classes
- ApplyArityFunctions
- def map6[A0, A1, A2, A3, A4, A5, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5])(f: (A0, A1, A2, A3, A4, A5) => Z): F[Z]
- Definition Classes
- ApplyArityFunctions
- def map7[A0, A1, A2, A3, A4, A5, A6, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6])(f: (A0, A1, A2, A3, A4, A5, A6) => Z): F[Z]
- Definition Classes
- ApplyArityFunctions
- def map8[A0, A1, A2, A3, A4, A5, A6, A7, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7])(f: (A0, A1, A2, A3, A4, A5, A6, A7) => Z): F[Z]
- Definition Classes
- ApplyArityFunctions
- def map9[A0, A1, A2, A3, A4, A5, A6, A7, A8, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8) => Z): F[Z]
- Definition Classes
- ApplyArityFunctions
- final def ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
- final def notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
- final def notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
- def point[A](a: A): F[A]
point
lifts any value into a Monoidal Functor.point
lifts any value into a Monoidal Functor.Example:
scala> import cats.implicits._ scala> InvariantMonoidal[Option].point(10) res0: Option[Int] = Some(10)
- Definition Classes
- InvariantMonoidal
- def prependK[A](a: A, fa: F[A]): F[A]
Lift
a
intoF[_]
and prepend it tofa
.Lift
a
intoF[_]
and prepend it tofa
.Example:
scala> NonEmptyAlternative[List].prependK(1, List(2, 3, 4)) res0: List[Int] = List(1, 2, 3, 4)
- Definition Classes
- NonEmptyAlternative
- def product[A, B](fa: F[A], fb: F[B]): F[(A, B)]
Combine an
F[A]
and anF[B]
into anF[(A, B)]
that maintains the effects of bothfa
andfb
.Combine an
F[A]
and anF[B]
into anF[(A, B)]
that maintains the effects of bothfa
andfb
.Example:
scala> import cats.implicits._ scala> val noneInt: Option[Int] = None scala> val some3: Option[Int] = Some(3) scala> val noneString: Option[String] = None scala> val someFoo: Option[String] = Some("foo") scala> Semigroupal[Option].product(noneInt, noneString) res0: Option[(Int, String)] = None scala> Semigroupal[Option].product(noneInt, someFoo) res1: Option[(Int, String)] = None scala> Semigroupal[Option].product(some3, noneString) res2: Option[(Int, String)] = None scala> Semigroupal[Option].product(some3, someFoo) res3: Option[(Int, String)] = Some((3,foo))
- Definition Classes
- Apply → Semigroupal
- def productL[A, B](fa: F[A])(fb: F[B]): F[A]
Compose two actions, discarding any value produced by the second.
Compose two actions, discarding any value produced by the second.
- Definition Classes
- Apply
- See also
productR to discard the value of the first instead. Example:
scala> import cats.implicits._ scala> import cats.data.Validated scala> import Validated.{Valid, Invalid} scala> type ErrOr[A] = Validated[String, A] scala> val validInt: ErrOr[Int] = Valid(3) scala> val validBool: ErrOr[Boolean] = Valid(true) scala> val invalidInt: ErrOr[Int] = Invalid("Invalid int.") scala> val invalidBool: ErrOr[Boolean] = Invalid("Invalid boolean.") scala> Apply[ErrOr].productL(validInt)(validBool) res0: ErrOr[Int] = Valid(3) scala> Apply[ErrOr].productL(invalidInt)(validBool) res1: ErrOr[Int] = Invalid(Invalid int.) scala> Apply[ErrOr].productL(validInt)(invalidBool) res2: ErrOr[Int] = Invalid(Invalid boolean.) scala> Apply[ErrOr].productL(invalidInt)(invalidBool) res3: ErrOr[Int] = Invalid(Invalid int.Invalid boolean.)
- def productR[A, B](fa: F[A])(fb: F[B]): F[B]
Compose two actions, discarding any value produced by the first.
Compose two actions, discarding any value produced by the first.
- Definition Classes
- Apply
- See also
productL to discard the value of the second instead. Example:
scala> import cats.implicits._ scala> import cats.data.Validated scala> import Validated.{Valid, Invalid} scala> type ErrOr[A] = Validated[String, A] scala> val validInt: ErrOr[Int] = Valid(3) scala> val validBool: ErrOr[Boolean] = Valid(true) scala> val invalidInt: ErrOr[Int] = Invalid("Invalid int.") scala> val invalidBool: ErrOr[Boolean] = Invalid("Invalid boolean.") scala> Apply[ErrOr].productR(validInt)(validBool) res0: ErrOr[Boolean] = Valid(true) scala> Apply[ErrOr].productR(invalidInt)(validBool) res1: ErrOr[Boolean] = Invalid(Invalid int.) scala> Apply[ErrOr].productR(validInt)(invalidBool) res2: ErrOr[Boolean] = Invalid(Invalid boolean.) scala> Apply[ErrOr].productR(invalidInt)(invalidBool) res3: ErrOr[Boolean] = Invalid(Invalid int.Invalid boolean.)
- def repeatedCombineNK[A](a: F[A], n: Int): F[A]
Return
a
combined with itself more than once.Return
a
combined with itself more than once.- Attributes
- protected[this]
- Definition Classes
- SemigroupK
- def replicateA[A](n: Int, fa: F[A]): F[List[A]]
Given
fa
andn
, applyfa
n
times to construct anF[List[A]]
value.Given
fa
andn
, applyfa
n
times to construct anF[List[A]]
value.Example:
scala> import cats.data.State scala> type Counter[A] = State[Int, A] scala> val getAndIncrement: Counter[Int] = State { i => (i + 1, i) } scala> val getAndIncrement5: Counter[List[Int]] = | Applicative[Counter].replicateA(5, getAndIncrement) scala> getAndIncrement5.run(0).value res0: (Int, List[Int]) = (5,List(0, 1, 2, 3, 4))
- Definition Classes
- Applicative
- def replicateA_[A](n: Int, fa: F[A]): F[Unit]
Given
fa
andn
, applyfa
n
times discarding results to return F[Unit].Given
fa
andn
, applyfa
n
times discarding results to return F[Unit].Example:
scala> import cats.data.State scala> type Counter[A] = State[Int, A] scala> val getAndIncrement: Counter[Int] = State { i => (i + 1, i) } scala> val getAndIncrement5: Counter[Unit] = | Applicative[Counter].replicateA_(5, getAndIncrement) scala> getAndIncrement5.run(0).value res0: (Int, Unit) = (5,())
- Definition Classes
- Applicative
- def reverse: MonoidK[F]
return a semigroupK that reverses the order so combineK(a, b) == reverse.combineK(b, a)
return a semigroupK that reverses the order so combineK(a, b) == reverse.combineK(b, a)
- Definition Classes
- MonoidK → SemigroupK
- def separate[G[_, _], A, B](fgab: F[G[A, B]])(implicit FM: FlatMap[F], G: Bifoldable[G]): (F[A], F[B])
Separate the inner foldable values into the "lefts" and "rights".
Separate the inner foldable values into the "lefts" and "rights".
Example:
scala> val l: List[Either[String, Int]] = List(Right(1), Left("error")) scala> Alternative[List].separate(l) res0: (List[String], List[Int]) = (List(error),List(1))
- def separateFoldable[G[_, _], A, B](fgab: F[G[A, B]])(implicit G: Bifoldable[G], FF: Foldable[F]): (F[A], F[B])
Separate the inner foldable values into the "lefts" and "rights".
Separate the inner foldable values into the "lefts" and "rights".
A variant of separate that is specialized for Fs that have Foldable instances which allows for a single-pass implementation (as opposed to
separate
which is 2-pass).
Example:
scala> import cats.implicits._ scala> val l: List[Either[String, Int]] = List(Right(1), Left("error")) scala> Alternative[List].separateFoldable(l) res0: (List[String], List[Int]) = (List(error),List(1))
separate }}}
Example:
scala> import cats.implicits._ scala> val l: List[Either[String, Int]] = List(Right(1), Left("error")) scala> Alternative[List].separateFoldable(l) res0: (List[String], List[Int]) = (List(error),List(1))
- def sum[A, B](fa: F[A], fb: F[B])(implicit F: Functor[F]): F[Either[A, B]]
Combines
F[A]
andF[B]
into aF[Either[A,B]]]
.Combines
F[A]
andF[B]
into aF[Either[A,B]]]
.Example:
scala> import cats.SemigroupK scala> import cats.data.NonEmptyList scala> SemigroupK[NonEmptyList].sum(NonEmptyList.one("abc"), NonEmptyList.one(2)) res0: NonEmptyList[Either[String,Int]] = NonEmptyList(Left(abc), Right(2))
- Definition Classes
- SemigroupK
- final def synchronized[T0](arg0: => T0): T0
- Definition Classes
- AnyRef
- def toString(): String
- Definition Classes
- AnyRef → Any
- def tuple10[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9)]
- Definition Classes
- ApplyArityFunctions
- def tuple11[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10)]
- Definition Classes
- ApplyArityFunctions
- def tuple12[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11)]
- Definition Classes
- ApplyArityFunctions
- def tuple13[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12)]
- Definition Classes
- ApplyArityFunctions
- def tuple14[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13)]
- Definition Classes
- ApplyArityFunctions
- def tuple15[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14)]
- Definition Classes
- ApplyArityFunctions
- def tuple16[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15)]
- Definition Classes
- ApplyArityFunctions
- def tuple17[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16)]
- Definition Classes
- ApplyArityFunctions
- def tuple18[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17)]
- Definition Classes
- ApplyArityFunctions
- def tuple19[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18)]
- Definition Classes
- ApplyArityFunctions
- def tuple2[A, B](f1: F[A], f2: F[B]): F[(A, B)]
- Definition Classes
- ApplyArityFunctions
- def tuple20[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19)]
- Definition Classes
- ApplyArityFunctions
- def tuple21[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19], f20: F[A20]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20)]
- Definition Classes
- ApplyArityFunctions
- def tuple22[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, A21](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19], f20: F[A20], f21: F[A21]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, A21)]
- Definition Classes
- ApplyArityFunctions
- def tuple3[A0, A1, A2](f0: F[A0], f1: F[A1], f2: F[A2]): F[(A0, A1, A2)]
- Definition Classes
- ApplyArityFunctions
- def tuple4[A0, A1, A2, A3](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3]): F[(A0, A1, A2, A3)]
- Definition Classes
- ApplyArityFunctions
- def tuple5[A0, A1, A2, A3, A4](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4]): F[(A0, A1, A2, A3, A4)]
- Definition Classes
- ApplyArityFunctions
- def tuple6[A0, A1, A2, A3, A4, A5](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5]): F[(A0, A1, A2, A3, A4, A5)]
- Definition Classes
- ApplyArityFunctions
- def tuple7[A0, A1, A2, A3, A4, A5, A6](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6]): F[(A0, A1, A2, A3, A4, A5, A6)]
- Definition Classes
- ApplyArityFunctions
- def tuple8[A0, A1, A2, A3, A4, A5, A6, A7](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7]): F[(A0, A1, A2, A3, A4, A5, A6, A7)]
- Definition Classes
- ApplyArityFunctions
- def tuple9[A0, A1, A2, A3, A4, A5, A6, A7, A8](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8)]
- Definition Classes
- ApplyArityFunctions
- def tupleLeft[A, B](fa: F[A], b: B): F[(B, A)]
Tuples the
A
value inF[A]
with the suppliedB
value, with theB
value on the left.Tuples the
A
value inF[A]
with the suppliedB
value, with theB
value on the left.Example:
scala> import scala.collection.immutable.Queue scala> import cats.Functor scala> import cats.implicits.catsStdInstancesForQueue scala> Functor[Queue].tupleLeft(Queue("hello", "world"), 42) res0: scala.collection.immutable.Queue[(Int, String)] = Queue((42,hello), (42,world))
- Definition Classes
- Functor
- def tupleRight[A, B](fa: F[A], b: B): F[(A, B)]
Tuples the
A
value inF[A]
with the suppliedB
value, with theB
value on the right.Tuples the
A
value inF[A]
with the suppliedB
value, with theB
value on the right.Example:
scala> import scala.collection.immutable.Queue scala> import cats.Functor scala> import cats.implicits.catsStdInstancesForQueue scala> Functor[Queue].tupleRight(Queue("hello", "world"), 42) res0: scala.collection.immutable.Queue[(String, Int)] = Queue((hello,42), (world,42))
- Definition Classes
- Functor
- def unit: F[Unit]
Returns an
F[Unit]
value, equivalent withpure(())
.Returns an
F[Unit]
value, equivalent withpure(())
.A useful shorthand, also allowing implementations to optimize the returned reference (e.g. it can be a
val
).Example:
scala> import cats.implicits._ scala> Applicative[Option].unit res0: Option[Unit] = Some(())
- Definition Classes
- Applicative → InvariantMonoidal
- def unite[G[_], A](fga: F[G[A]])(implicit FM: FlatMap[F], G: Foldable[G]): F[A]
Fold over the inner structure to combine all of the values with our combine method inherited from MonoidK.
Fold over the inner structure to combine all of the values with our combine method inherited from MonoidK. The result is for us to accumulate all of the "interesting" values of the inner G, so if G is Option, we collect all the Some values, if G is Either, we collect all the Right values, etc.
Example:
scala> val x: List[Vector[Int]] = List(Vector(1, 2), Vector(3, 4)) scala> Alternative[List].unite(x) res0: List[Int] = List(1, 2, 3, 4)
- def unlessA[A](cond: Boolean)(f: => F[A]): F[Unit]
Returns the given argument (mapped to Unit) if
cond
isfalse
, otherwise, unit lifted into F.Returns the given argument (mapped to Unit) if
cond
isfalse
, otherwise, unit lifted into F.Example:
scala> import cats.implicits._ scala> Applicative[List].unlessA(true)(List(1, 2, 3)) res0: List[Unit] = List(()) scala> Applicative[List].unlessA(false)(List(1, 2, 3)) res1: List[Unit] = List((), (), ()) scala> Applicative[List].unlessA(true)(List.empty[Int]) res2: List[Unit] = List(()) scala> Applicative[List].unlessA(false)(List.empty[Int]) res3: List[Unit] = List()
- Definition Classes
- Applicative
- def unzip[A, B](fab: F[(A, B)]): (F[A], F[B])
Un-zips an
F[(A, B)]
consisting of element pairs or Tuple2 into two separate F's tupled.Un-zips an
F[(A, B)]
consisting of element pairs or Tuple2 into two separate F's tupled.NOTE: Check for effect duplication, possibly memoize before
scala> import cats.Functor scala> import cats.implicits.catsStdInstancesForList scala> Functor[List].unzip(List((1,2), (3, 4))) res0: (List[Int], List[Int]) = (List(1, 3),List(2, 4))
- Definition Classes
- Functor
- def void[A](fa: F[A]): F[Unit]
Empty the fa of the values, preserving the structure
Empty the fa of the values, preserving the structure
Example:
scala> import cats.Functor scala> import cats.implicits.catsStdInstancesForList scala> Functor[List].void(List(1,2,3)) res0: List[Unit] = List((), (), ())
- Definition Classes
- Functor
- final def wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
- final def wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
- final def wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException]) @native()
- def whenA[A](cond: Boolean)(f: => F[A]): F[Unit]
Returns the given argument (mapped to Unit) if
cond
istrue
, otherwise, unit lifted into F.Returns the given argument (mapped to Unit) if
cond
istrue
, otherwise, unit lifted into F.Example:
scala> import cats.implicits._ scala> Applicative[List].whenA(true)(List(1, 2, 3)) res0: List[Unit] = List((), (), ()) scala> Applicative[List].whenA(false)(List(1, 2, 3)) res1: List[Unit] = List(()) scala> Applicative[List].whenA(true)(List.empty[Int]) res2: List[Unit] = List() scala> Applicative[List].whenA(false)(List.empty[Int]) res3: List[Unit] = List(())
- Definition Classes
- Applicative
- def widen[A, B >: A](fa: F[A]): F[B]
Lifts natural subtyping covariance of covariant Functors.
Lifts natural subtyping covariance of covariant Functors.
NOTE: In certain (perhaps contrived) situations that rely on universal equality this can result in a
ClassCastException
, because it is implemented as a type cast. It could be implemented asmap(identity)
, but according to the functor laws, that should be equal tofa
, and a type cast is often much more performant. See this example ofwiden
creating aClassCastException
.Example:
scala> import cats.Functor scala> import cats.implicits.catsStdInstancesForOption scala> val s = Some(42) scala> Functor[Option].widen(s) res0: Option[Int] = Some(42)
- Definition Classes
- Functor
Deprecated Value Members
- def ifA[A](fcond: F[Boolean])(ifTrue: F[A], ifFalse: F[A]): F[A]
- Definition Classes
- Apply
- Annotations
- @deprecated
- Deprecated
(Since version 2.6.2) Dangerous method, use ifM (a flatMap) or ifF (a map) instead
- def separate[G[_, _], A, B](fgab: F[G[A, B]])(FM: Monad[F], G: Bifoldable[G]): (F[A], F[B])
- Attributes
- protected
- Annotations
- @deprecated
- Deprecated
(Since version 2.6.2) use a FlatMap-constrained version instead
- def unite[G[_], A](fga: F[G[A]])(FM: Monad[F], G: Foldable[G]): F[A]
- Attributes
- protected
- Annotations
- @deprecated
- Deprecated
(Since version 2.6.2) use a FlatMap-constrained version instead
Inherited from MonoidK[F]
Inherited from NonEmptyAlternative[F]
Inherited from SemigroupK[F]
Inherited from Applicative[F]
Inherited from InvariantMonoidal[F]
Inherited from Apply[F]
Inherited from ApplyArityFunctions[F]
Inherited from InvariantSemigroupal[F]
Inherited from Semigroupal[F]
Inherited from Functor[F]
Inherited from Invariant[F]
Inherited from Serializable
Inherited from AnyRef
Inherited from Any
Ungrouped
ap arity
Higher-arity ap methods
map arity
Higher-arity map methods
tuple arity
Higher-arity tuple methods