GenConcurrent

trait GenConcurrent[F[_], E] extends GenSpawn[F, E]
Companion:
object
trait GenSpawn[F, E]
trait Unique[F]
trait MonadCancel[F, E]
trait MonadError[F, E]
trait Monad[F]
trait FlatMap[F]
trait ApplicativeError[F, E]
trait Applicative[F]
trait Apply[F]
trait Semigroupal[F]
trait Functor[F]
trait Invariant[F]
trait Serializable
class Object
trait Matchable
class Any
trait GenTemporal[F, E]

Value members

Abstract methods

def deferred[A]: F[Deferred[F, A]]
Implicitly added by genConcurrentForEitherT
def deferred[A]: F[Deferred[F, A]]
Implicitly added by genConcurrentForKleisli
def deferred[A]: F[Deferred[F, A]]
Implicitly added by genConcurrentForOptionT
def deferred[A]: F[Deferred[F, A]]
def ref[A](a: A): F[Ref[F, A]]
Implicitly added by genConcurrentForEitherT
def ref[A](a: A): F[Ref[F, A]]
Implicitly added by genConcurrentForKleisli
def ref[A](a: A): F[Ref[F, A]]
Implicitly added by genConcurrentForOptionT
def ref[A](a: A): F[Ref[F, A]]

Concrete methods

def memoize[A](fa: F[A]): F[F[A]]
Implicitly added by genConcurrentForEitherT

Caches the result of fa.

Caches the result of fa.

The returned inner effect, hence referred to as get, when sequenced, will evaluate fa and cache the result. If get is sequenced multiple times fa will only be evaluated once.

If all gets are canceled prior to fa completing, it will be canceled and evaluated again the next time get is sequenced.

def memoize[A](fa: F[A]): F[F[A]]
Implicitly added by genConcurrentForKleisli

Caches the result of fa.

Caches the result of fa.

The returned inner effect, hence referred to as get, when sequenced, will evaluate fa and cache the result. If get is sequenced multiple times fa will only be evaluated once.

If all gets are canceled prior to fa completing, it will be canceled and evaluated again the next time get is sequenced.

def memoize[A](fa: F[A]): F[F[A]]
Implicitly added by genConcurrentForOptionT

Caches the result of fa.

Caches the result of fa.

The returned inner effect, hence referred to as get, when sequenced, will evaluate fa and cache the result. If get is sequenced multiple times fa will only be evaluated once.

If all gets are canceled prior to fa completing, it will be canceled and evaluated again the next time get is sequenced.

def memoize[A](fa: F[A]): F[F[A]]

Caches the result of fa.

Caches the result of fa.

The returned inner effect, hence referred to as get, when sequenced, will evaluate fa and cache the result. If get is sequenced multiple times fa will only be evaluated once.

If all gets are canceled prior to fa completing, it will be canceled and evaluated again the next time get is sequenced.

def parReplicateAN[A](n: Int)(replicas: Int, ma: F[A]): F[List[A]]
Implicitly added by genConcurrentForEitherT

Like Parallel.parReplicateA, but limits the degree of parallelism.

Like Parallel.parReplicateA, but limits the degree of parallelism.

def parReplicateAN[A](n: Int)(replicas: Int, ma: F[A]): F[List[A]]
Implicitly added by genConcurrentForKleisli

Like Parallel.parReplicateA, but limits the degree of parallelism.

Like Parallel.parReplicateA, but limits the degree of parallelism.

def parReplicateAN[A](n: Int)(replicas: Int, ma: F[A]): F[List[A]]
Implicitly added by genConcurrentForOptionT

Like Parallel.parReplicateA, but limits the degree of parallelism.

Like Parallel.parReplicateA, but limits the degree of parallelism.

def parReplicateAN[A](n: Int)(replicas: Int, ma: F[A]): F[List[A]]

Like Parallel.parReplicateA, but limits the degree of parallelism.

Like Parallel.parReplicateA, but limits the degree of parallelism.

def parSequenceN[T[_] : Traverse, A](n: Int)(tma: T[F[A]]): F[T[A]]
Implicitly added by genConcurrentForEitherT

Like Parallel.parSequence, but limits the degree of parallelism.

Like Parallel.parSequence, but limits the degree of parallelism.

def parSequenceN[T[_] : Traverse, A](n: Int)(tma: T[F[A]]): F[T[A]]
Implicitly added by genConcurrentForKleisli

Like Parallel.parSequence, but limits the degree of parallelism.

Like Parallel.parSequence, but limits the degree of parallelism.

def parSequenceN[T[_] : Traverse, A](n: Int)(tma: T[F[A]]): F[T[A]]
Implicitly added by genConcurrentForOptionT

Like Parallel.parSequence, but limits the degree of parallelism.

Like Parallel.parSequence, but limits the degree of parallelism.

def parSequenceN[T[_] : Traverse, A](n: Int)(tma: T[F[A]]): F[T[A]]

Like Parallel.parSequence, but limits the degree of parallelism.

Like Parallel.parSequence, but limits the degree of parallelism.

def parTraverseN[T[_] : Traverse, A, B](n: Int)(ta: T[A])(f: A => F[B]): F[T[B]]
Implicitly added by genConcurrentForEitherT

Like Parallel.parTraverse, but limits the degree of parallelism. Note that the semantics of this operation aim to maximise fairness: when a spot to execute becomes available, every task has a chance to claim it, and not only the next n tasks in ta

Like Parallel.parTraverse, but limits the degree of parallelism. Note that the semantics of this operation aim to maximise fairness: when a spot to execute becomes available, every task has a chance to claim it, and not only the next n tasks in ta

def parTraverseN[T[_] : Traverse, A, B](n: Int)(ta: T[A])(f: A => F[B]): F[T[B]]
Implicitly added by genConcurrentForKleisli

Like Parallel.parTraverse, but limits the degree of parallelism. Note that the semantics of this operation aim to maximise fairness: when a spot to execute becomes available, every task has a chance to claim it, and not only the next n tasks in ta

Like Parallel.parTraverse, but limits the degree of parallelism. Note that the semantics of this operation aim to maximise fairness: when a spot to execute becomes available, every task has a chance to claim it, and not only the next n tasks in ta

def parTraverseN[T[_] : Traverse, A, B](n: Int)(ta: T[A])(f: A => F[B]): F[T[B]]
Implicitly added by genConcurrentForOptionT

Like Parallel.parTraverse, but limits the degree of parallelism. Note that the semantics of this operation aim to maximise fairness: when a spot to execute becomes available, every task has a chance to claim it, and not only the next n tasks in ta

Like Parallel.parTraverse, but limits the degree of parallelism. Note that the semantics of this operation aim to maximise fairness: when a spot to execute becomes available, every task has a chance to claim it, and not only the next n tasks in ta

def parTraverseN[T[_] : Traverse, A, B](n: Int)(ta: T[A])(f: A => F[B]): F[T[B]]

Like Parallel.parTraverse, but limits the degree of parallelism. Note that the semantics of this operation aim to maximise fairness: when a spot to execute becomes available, every task has a chance to claim it, and not only the next n tasks in ta

Like Parallel.parTraverse, but limits the degree of parallelism. Note that the semantics of this operation aim to maximise fairness: when a spot to execute becomes available, every task has a chance to claim it, and not only the next n tasks in ta

override def racePair[A, B](fa: F[A], fb: F[B]): F[Either[(Outcome[F, E, A], Fiber[F, E, B]), (Fiber[F, E, A], Outcome[F, E, B])]]
Definition Classes

Inherited methods

final def *>[A, B](fa: F[A])(fb: F[B]): F[B]
Implicitly added by genConcurrentForEitherT

Alias for productR.

Alias for productR.

Inherited from:
Apply
final def *>[A, B](fa: F[A])(fb: F[B]): F[B]
Implicitly added by genConcurrentForKleisli

Alias for productR.

Alias for productR.

Inherited from:
Apply
final def *>[A, B](fa: F[A])(fb: F[B]): F[B]
Implicitly added by genConcurrentForOptionT

Alias for productR.

Alias for productR.

Inherited from:
Apply
final def *>[A, B](fa: F[A])(fb: F[B]): F[B]

Alias for productR.

Alias for productR.

Inherited from:
Apply
final def <*[A, B](fa: F[A])(fb: F[B]): F[A]
Implicitly added by genConcurrentForEitherT

Alias for productL.

Alias for productL.

Inherited from:
Apply
final def <*[A, B](fa: F[A])(fb: F[B]): F[A]
Implicitly added by genConcurrentForKleisli

Alias for productL.

Alias for productL.

Inherited from:
Apply
final def <*[A, B](fa: F[A])(fb: F[B]): F[A]
Implicitly added by genConcurrentForOptionT

Alias for productL.

Alias for productL.

Inherited from:
Apply
final def <*[A, B](fa: F[A])(fb: F[B]): F[A]

Alias for productL.

Alias for productL.

Inherited from:
Apply
final def <*>[A, B](ff: F[A => B])(fa: F[A]): F[B]
Implicitly added by genConcurrentForEitherT

Alias for ap.

Alias for ap.

Inherited from:
Apply
final def <*>[A, B](ff: F[A => B])(fa: F[A]): F[B]
Implicitly added by genConcurrentForKleisli

Alias for ap.

Alias for ap.

Inherited from:
Apply
final def <*>[A, B](ff: F[A => B])(fa: F[A]): F[B]
Implicitly added by genConcurrentForOptionT

Alias for ap.

Alias for ap.

Inherited from:
Apply
final def <*>[A, B](ff: F[A => B])(fa: F[A]): F[B]

Alias for ap.

Alias for ap.

Inherited from:
Apply
override def adaptError[A](fa: F[A])(pf: PartialFunction[E, E]): F[A]
Definition Classes
Inherited from:
MonadError
override def ap[A, B](ff: F[A => B])(fa: F[A]): F[B]
Definition Classes
Inherited from:
FlatMap
def ap10[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9]): F[Z]
Implicitly added by genConcurrentForEitherT
Inherited from:
ApplyArityFunctions
def ap10[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9]): F[Z]
Implicitly added by genConcurrentForKleisli
Inherited from:
ApplyArityFunctions
def ap10[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9]): F[Z]
Implicitly added by genConcurrentForOptionT
Inherited from:
ApplyArityFunctions
def ap10[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9]): F[Z]
Inherited from:
ApplyArityFunctions
def ap11[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10]): F[Z]
Implicitly added by genConcurrentForEitherT
Inherited from:
ApplyArityFunctions
def ap11[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10]): F[Z]
Implicitly added by genConcurrentForKleisli
Inherited from:
ApplyArityFunctions
def ap11[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10]): F[Z]
Implicitly added by genConcurrentForOptionT
Inherited from:
ApplyArityFunctions
def ap11[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10]): F[Z]
Inherited from:
ApplyArityFunctions
def ap12[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11]): F[Z]
Implicitly added by genConcurrentForEitherT
Inherited from:
ApplyArityFunctions
def ap12[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11]): F[Z]
Implicitly added by genConcurrentForKleisli
Inherited from:
ApplyArityFunctions
def ap12[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11]): F[Z]
Implicitly added by genConcurrentForOptionT
Inherited from:
ApplyArityFunctions
def ap12[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11]): F[Z]
Inherited from:
ApplyArityFunctions
def ap13[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12]): F[Z]
Implicitly added by genConcurrentForEitherT
Inherited from:
ApplyArityFunctions
def ap13[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12]): F[Z]
Implicitly added by genConcurrentForKleisli
Inherited from:
ApplyArityFunctions
def ap13[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12]): F[Z]
Implicitly added by genConcurrentForOptionT
Inherited from:
ApplyArityFunctions
def ap13[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12]): F[Z]
Inherited from:
ApplyArityFunctions
def ap14[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13]): F[Z]
Implicitly added by genConcurrentForEitherT
Inherited from:
ApplyArityFunctions
def ap14[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13]): F[Z]
Implicitly added by genConcurrentForKleisli
Inherited from:
ApplyArityFunctions
def ap14[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13]): F[Z]
Implicitly added by genConcurrentForOptionT
Inherited from:
ApplyArityFunctions
def ap14[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13]): F[Z]
Inherited from:
ApplyArityFunctions
def ap15[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14]): F[Z]
Implicitly added by genConcurrentForEitherT
Inherited from:
ApplyArityFunctions
def ap15[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14]): F[Z]
Implicitly added by genConcurrentForKleisli
Inherited from:
ApplyArityFunctions
def ap15[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14]): F[Z]
Implicitly added by genConcurrentForOptionT
Inherited from:
ApplyArityFunctions
def ap15[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14]): F[Z]
Inherited from:
ApplyArityFunctions
def ap16[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15]): F[Z]
Implicitly added by genConcurrentForEitherT
Inherited from:
ApplyArityFunctions
def ap16[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15]): F[Z]
Implicitly added by genConcurrentForKleisli
Inherited from:
ApplyArityFunctions
def ap16[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15]): F[Z]
Implicitly added by genConcurrentForOptionT
Inherited from:
ApplyArityFunctions
def ap16[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15]): F[Z]
Inherited from:
ApplyArityFunctions
def ap17[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16]): F[Z]
Implicitly added by genConcurrentForEitherT
Inherited from:
ApplyArityFunctions
def ap17[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16]): F[Z]
Implicitly added by genConcurrentForKleisli
Inherited from:
ApplyArityFunctions
def ap17[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16]): F[Z]
Implicitly added by genConcurrentForOptionT
Inherited from:
ApplyArityFunctions
def ap17[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16]): F[Z]
Inherited from:
ApplyArityFunctions
def ap18[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17]): F[Z]
Implicitly added by genConcurrentForEitherT
Inherited from:
ApplyArityFunctions
def ap18[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17]): F[Z]
Implicitly added by genConcurrentForKleisli
Inherited from:
ApplyArityFunctions
def ap18[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17]): F[Z]
Implicitly added by genConcurrentForOptionT
Inherited from:
ApplyArityFunctions
def ap18[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17]): F[Z]
Inherited from:
ApplyArityFunctions
def ap19[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18]): F[Z]
Implicitly added by genConcurrentForEitherT
Inherited from:
ApplyArityFunctions
def ap19[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18]): F[Z]
Implicitly added by genConcurrentForKleisli
Inherited from:
ApplyArityFunctions
def ap19[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18]): F[Z]
Implicitly added by genConcurrentForOptionT
Inherited from:
ApplyArityFunctions
def ap19[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18]): F[Z]
Inherited from:
ApplyArityFunctions
override def ap2[A, B, Z](ff: F[(A, B) => Z])(fa: F[A], fb: F[B]): F[Z]
Definition Classes
Inherited from:
FlatMap
def ap20[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19]): F[Z]
Implicitly added by genConcurrentForEitherT
Inherited from:
ApplyArityFunctions
def ap20[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19]): F[Z]
Implicitly added by genConcurrentForKleisli
Inherited from:
ApplyArityFunctions
def ap20[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19]): F[Z]
Implicitly added by genConcurrentForOptionT
Inherited from:
ApplyArityFunctions
def ap20[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19]): F[Z]
Inherited from:
ApplyArityFunctions
def ap21[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19], f20: F[A20]): F[Z]
Implicitly added by genConcurrentForEitherT
Inherited from:
ApplyArityFunctions
def ap21[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19], f20: F[A20]): F[Z]
Implicitly added by genConcurrentForKleisli
Inherited from:
ApplyArityFunctions
def ap21[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19], f20: F[A20]): F[Z]
Implicitly added by genConcurrentForOptionT
Inherited from:
ApplyArityFunctions
def ap21[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19], f20: F[A20]): F[Z]
Inherited from:
ApplyArityFunctions
def ap22[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, A21, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, A21) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19], f20: F[A20], f21: F[A21]): F[Z]
Implicitly added by genConcurrentForEitherT
Inherited from:
ApplyArityFunctions
def ap22[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, A21, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, A21) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19], f20: F[A20], f21: F[A21]): F[Z]
Implicitly added by genConcurrentForKleisli
Inherited from:
ApplyArityFunctions
def ap22[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, A21, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, A21) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19], f20: F[A20], f21: F[A21]): F[Z]
Implicitly added by genConcurrentForOptionT
Inherited from:
ApplyArityFunctions
def ap22[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, A21, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, A21) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19], f20: F[A20], f21: F[A21]): F[Z]
Inherited from:
ApplyArityFunctions
def ap3[A0, A1, A2, Z](f: F[(A0, A1, A2) => Z])(f0: F[A0], f1: F[A1], f2: F[A2]): F[Z]
Implicitly added by genConcurrentForEitherT
Inherited from:
ApplyArityFunctions
def ap3[A0, A1, A2, Z](f: F[(A0, A1, A2) => Z])(f0: F[A0], f1: F[A1], f2: F[A2]): F[Z]
Implicitly added by genConcurrentForKleisli
Inherited from:
ApplyArityFunctions
def ap3[A0, A1, A2, Z](f: F[(A0, A1, A2) => Z])(f0: F[A0], f1: F[A1], f2: F[A2]): F[Z]
Implicitly added by genConcurrentForOptionT
Inherited from:
ApplyArityFunctions
def ap3[A0, A1, A2, Z](f: F[(A0, A1, A2) => Z])(f0: F[A0], f1: F[A1], f2: F[A2]): F[Z]
Inherited from:
ApplyArityFunctions
def ap4[A0, A1, A2, A3, Z](f: F[(A0, A1, A2, A3) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3]): F[Z]
Implicitly added by genConcurrentForEitherT
Inherited from:
ApplyArityFunctions
def ap4[A0, A1, A2, A3, Z](f: F[(A0, A1, A2, A3) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3]): F[Z]
Implicitly added by genConcurrentForKleisli
Inherited from:
ApplyArityFunctions
def ap4[A0, A1, A2, A3, Z](f: F[(A0, A1, A2, A3) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3]): F[Z]
Implicitly added by genConcurrentForOptionT
Inherited from:
ApplyArityFunctions
def ap4[A0, A1, A2, A3, Z](f: F[(A0, A1, A2, A3) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3]): F[Z]
Inherited from:
ApplyArityFunctions
def ap5[A0, A1, A2, A3, A4, Z](f: F[(A0, A1, A2, A3, A4) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4]): F[Z]
Implicitly added by genConcurrentForEitherT
Inherited from:
ApplyArityFunctions
def ap5[A0, A1, A2, A3, A4, Z](f: F[(A0, A1, A2, A3, A4) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4]): F[Z]
Implicitly added by genConcurrentForKleisli
Inherited from:
ApplyArityFunctions
def ap5[A0, A1, A2, A3, A4, Z](f: F[(A0, A1, A2, A3, A4) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4]): F[Z]
Implicitly added by genConcurrentForOptionT
Inherited from:
ApplyArityFunctions
def ap5[A0, A1, A2, A3, A4, Z](f: F[(A0, A1, A2, A3, A4) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4]): F[Z]
Inherited from:
ApplyArityFunctions
def ap6[A0, A1, A2, A3, A4, A5, Z](f: F[(A0, A1, A2, A3, A4, A5) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5]): F[Z]
Implicitly added by genConcurrentForEitherT
Inherited from:
ApplyArityFunctions
def ap6[A0, A1, A2, A3, A4, A5, Z](f: F[(A0, A1, A2, A3, A4, A5) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5]): F[Z]
Implicitly added by genConcurrentForKleisli
Inherited from:
ApplyArityFunctions
def ap6[A0, A1, A2, A3, A4, A5, Z](f: F[(A0, A1, A2, A3, A4, A5) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5]): F[Z]
Implicitly added by genConcurrentForOptionT
Inherited from:
ApplyArityFunctions
def ap6[A0, A1, A2, A3, A4, A5, Z](f: F[(A0, A1, A2, A3, A4, A5) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5]): F[Z]
Inherited from:
ApplyArityFunctions
def ap7[A0, A1, A2, A3, A4, A5, A6, Z](f: F[(A0, A1, A2, A3, A4, A5, A6) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6]): F[Z]
Implicitly added by genConcurrentForEitherT
Inherited from:
ApplyArityFunctions
def ap7[A0, A1, A2, A3, A4, A5, A6, Z](f: F[(A0, A1, A2, A3, A4, A5, A6) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6]): F[Z]
Implicitly added by genConcurrentForKleisli
Inherited from:
ApplyArityFunctions
def ap7[A0, A1, A2, A3, A4, A5, A6, Z](f: F[(A0, A1, A2, A3, A4, A5, A6) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6]): F[Z]
Implicitly added by genConcurrentForOptionT
Inherited from:
ApplyArityFunctions
def ap7[A0, A1, A2, A3, A4, A5, A6, Z](f: F[(A0, A1, A2, A3, A4, A5, A6) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6]): F[Z]
Inherited from:
ApplyArityFunctions
def ap8[A0, A1, A2, A3, A4, A5, A6, A7, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7]): F[Z]
Implicitly added by genConcurrentForEitherT
Inherited from:
ApplyArityFunctions
def ap8[A0, A1, A2, A3, A4, A5, A6, A7, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7]): F[Z]
Implicitly added by genConcurrentForKleisli
Inherited from:
ApplyArityFunctions
def ap8[A0, A1, A2, A3, A4, A5, A6, A7, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7]): F[Z]
Implicitly added by genConcurrentForOptionT
Inherited from:
ApplyArityFunctions
def ap8[A0, A1, A2, A3, A4, A5, A6, A7, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7]): F[Z]
Inherited from:
ApplyArityFunctions
def ap9[A0, A1, A2, A3, A4, A5, A6, A7, A8, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8]): F[Z]
Implicitly added by genConcurrentForEitherT
Inherited from:
ApplyArityFunctions
def ap9[A0, A1, A2, A3, A4, A5, A6, A7, A8, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8]): F[Z]
Implicitly added by genConcurrentForKleisli
Inherited from:
ApplyArityFunctions
def ap9[A0, A1, A2, A3, A4, A5, A6, A7, A8, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8]): F[Z]
Implicitly added by genConcurrentForOptionT
Inherited from:
ApplyArityFunctions
def ap9[A0, A1, A2, A3, A4, A5, A6, A7, A8, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8]): F[Z]
Inherited from:
ApplyArityFunctions
Implicitly added by genConcurrentForEitherT
Inherited from:
GenSpawn
Implicitly added by genConcurrentForKleisli
Inherited from:
GenSpawn
Implicitly added by genConcurrentForOptionT
Inherited from:
GenSpawn
Inherited from:
GenSpawn
def as[A, B](fa: F[A], b: B): F[B]
Implicitly added by genConcurrentForEitherT

Replaces the A value in F[A] with the supplied value.

Replaces the A value in F[A] with the supplied value.

Example:

scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForList

scala> Functor[List].as(List(1,2,3), "hello")
res0: List[String] = List(hello, hello, hello)
Inherited from:
Functor
def as[A, B](fa: F[A], b: B): F[B]
Implicitly added by genConcurrentForKleisli

Replaces the A value in F[A] with the supplied value.

Replaces the A value in F[A] with the supplied value.

Example:

scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForList

scala> Functor[List].as(List(1,2,3), "hello")
res0: List[String] = List(hello, hello, hello)
Inherited from:
Functor
def as[A, B](fa: F[A], b: B): F[B]
Implicitly added by genConcurrentForOptionT

Replaces the A value in F[A] with the supplied value.

Replaces the A value in F[A] with the supplied value.

Example:

scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForList

scala> Functor[List].as(List(1,2,3), "hello")
res0: List[String] = List(hello, hello, hello)
Inherited from:
Functor
def as[A, B](fa: F[A], b: B): F[B]

Replaces the A value in F[A] with the supplied value.

Replaces the A value in F[A] with the supplied value.

Example:

scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForList

scala> Functor[List].as(List(1,2,3), "hello")
res0: List[String] = List(hello, hello, hello)
Inherited from:
Functor
def attempt[A](fa: F[A]): F[Either[E, A]]
Implicitly added by genConcurrentForEitherT

Handle errors by turning them into scala.util.Either values.

Handle errors by turning them into scala.util.Either values.

If there is no error, then an scala.util.Right value will be returned instead.

All non-fatal errors should be handled by this method.

Inherited from:
ApplicativeError
def attempt[A](fa: F[A]): F[Either[E, A]]
Implicitly added by genConcurrentForKleisli

Handle errors by turning them into scala.util.Either values.

Handle errors by turning them into scala.util.Either values.

If there is no error, then an scala.util.Right value will be returned instead.

All non-fatal errors should be handled by this method.

Inherited from:
ApplicativeError
def attempt[A](fa: F[A]): F[Either[E, A]]
Implicitly added by genConcurrentForOptionT

Handle errors by turning them into scala.util.Either values.

Handle errors by turning them into scala.util.Either values.

If there is no error, then an scala.util.Right value will be returned instead.

All non-fatal errors should be handled by this method.

Inherited from:
ApplicativeError
def attempt[A](fa: F[A]): F[Either[E, A]]

Handle errors by turning them into scala.util.Either values.

Handle errors by turning them into scala.util.Either values.

If there is no error, then an scala.util.Right value will be returned instead.

All non-fatal errors should be handled by this method.

Inherited from:
ApplicativeError
def attemptNarrow[EE <: Throwable, A](fa: F[A])(implicit tag: ClassTag[EE], ev: EE <:< E): F[Either[EE, A]]
Implicitly added by genConcurrentForEitherT

Similar to attempt, but it only handles errors of type EE.

Similar to attempt, but it only handles errors of type EE.

Inherited from:
ApplicativeError
def attemptNarrow[EE <: Throwable, A](fa: F[A])(implicit tag: ClassTag[EE], ev: EE <:< E): F[Either[EE, A]]
Implicitly added by genConcurrentForKleisli

Similar to attempt, but it only handles errors of type EE.

Similar to attempt, but it only handles errors of type EE.

Inherited from:
ApplicativeError
def attemptNarrow[EE <: Throwable, A](fa: F[A])(implicit tag: ClassTag[EE], ev: EE <:< E): F[Either[EE, A]]
Implicitly added by genConcurrentForOptionT

Similar to attempt, but it only handles errors of type EE.

Similar to attempt, but it only handles errors of type EE.

Inherited from:
ApplicativeError
def attemptNarrow[EE <: Throwable, A](fa: F[A])(implicit tag: ClassTag[EE], ev: EE <:< E): F[Either[EE, A]]

Similar to attempt, but it only handles errors of type EE.

Similar to attempt, but it only handles errors of type EE.

Inherited from:
ApplicativeError
def attemptT[A](fa: F[A]): EitherT[F, E, A]
Implicitly added by genConcurrentForEitherT

Similar to attempt, but wraps the result in a cats.data.EitherT for convenience.

Similar to attempt, but wraps the result in a cats.data.EitherT for convenience.

Inherited from:
ApplicativeError
def attemptT[A](fa: F[A]): EitherT[F, E, A]
Implicitly added by genConcurrentForKleisli

Similar to attempt, but wraps the result in a cats.data.EitherT for convenience.

Similar to attempt, but wraps the result in a cats.data.EitherT for convenience.

Inherited from:
ApplicativeError
def attemptT[A](fa: F[A]): EitherT[F, E, A]
Implicitly added by genConcurrentForOptionT

Similar to attempt, but wraps the result in a cats.data.EitherT for convenience.

Similar to attempt, but wraps the result in a cats.data.EitherT for convenience.

Inherited from:
ApplicativeError
def attemptT[A](fa: F[A]): EitherT[F, E, A]

Similar to attempt, but wraps the result in a cats.data.EitherT for convenience.

Similar to attempt, but wraps the result in a cats.data.EitherT for convenience.

Inherited from:
ApplicativeError
def attemptTap[A, B](fa: F[A])(f: Either[E, A] => F[B]): F[A]
Implicitly added by genConcurrentForEitherT

Reifies the value or error of the source and performs an effect on the result, then recovers the original value or error back into F.

Reifies the value or error of the source and performs an effect on the result, then recovers the original value or error back into F.

Note that if the effect returned by f fails, the resulting effect will fail too.

Alias for fa.attempt.flatTap(f).rethrow for convenience.

Example:

scala> import cats.implicits._
scala> import scala.util.{Try, Success, Failure}

scala> def checkError(result: Either[Throwable, Int]): Try[String] = result.fold(_ => Failure(new java.lang.Exception), _ => Success("success"))

scala> val a: Try[Int] = Failure(new Throwable("failed"))
scala> a.attemptTap(checkError)
res0: scala.util.Try[Int] = Failure(java.lang.Exception)

scala> val b: Try[Int] = Success(1)
scala> b.attemptTap(checkError)
res1: scala.util.Try[Int] = Success(1)
Inherited from:
MonadError
def attemptTap[A, B](fa: F[A])(f: Either[E, A] => F[B]): F[A]
Implicitly added by genConcurrentForKleisli

Reifies the value or error of the source and performs an effect on the result, then recovers the original value or error back into F.

Reifies the value or error of the source and performs an effect on the result, then recovers the original value or error back into F.

Note that if the effect returned by f fails, the resulting effect will fail too.

Alias for fa.attempt.flatTap(f).rethrow for convenience.

Example:

scala> import cats.implicits._
scala> import scala.util.{Try, Success, Failure}

scala> def checkError(result: Either[Throwable, Int]): Try[String] = result.fold(_ => Failure(new java.lang.Exception), _ => Success("success"))

scala> val a: Try[Int] = Failure(new Throwable("failed"))
scala> a.attemptTap(checkError)
res0: scala.util.Try[Int] = Failure(java.lang.Exception)

scala> val b: Try[Int] = Success(1)
scala> b.attemptTap(checkError)
res1: scala.util.Try[Int] = Success(1)
Inherited from:
MonadError
def attemptTap[A, B](fa: F[A])(f: Either[E, A] => F[B]): F[A]
Implicitly added by genConcurrentForOptionT

Reifies the value or error of the source and performs an effect on the result, then recovers the original value or error back into F.

Reifies the value or error of the source and performs an effect on the result, then recovers the original value or error back into F.

Note that if the effect returned by f fails, the resulting effect will fail too.

Alias for fa.attempt.flatTap(f).rethrow for convenience.

Example:

scala> import cats.implicits._
scala> import scala.util.{Try, Success, Failure}

scala> def checkError(result: Either[Throwable, Int]): Try[String] = result.fold(_ => Failure(new java.lang.Exception), _ => Success("success"))

scala> val a: Try[Int] = Failure(new Throwable("failed"))
scala> a.attemptTap(checkError)
res0: scala.util.Try[Int] = Failure(java.lang.Exception)

scala> val b: Try[Int] = Success(1)
scala> b.attemptTap(checkError)
res1: scala.util.Try[Int] = Success(1)
Inherited from:
MonadError
def attemptTap[A, B](fa: F[A])(f: Either[E, A] => F[B]): F[A]

Reifies the value or error of the source and performs an effect on the result, then recovers the original value or error back into F.

Reifies the value or error of the source and performs an effect on the result, then recovers the original value or error back into F.

Note that if the effect returned by f fails, the resulting effect will fail too.

Alias for fa.attempt.flatTap(f).rethrow for convenience.

Example:

scala> import cats.implicits._
scala> import scala.util.{Try, Success, Failure}

scala> def checkError(result: Either[Throwable, Int]): Try[String] = result.fold(_ => Failure(new java.lang.Exception), _ => Success("success"))

scala> val a: Try[Int] = Failure(new Throwable("failed"))
scala> a.attemptTap(checkError)
res0: scala.util.Try[Int] = Failure(java.lang.Exception)

scala> val b: Try[Int] = Success(1)
scala> b.attemptTap(checkError)
res1: scala.util.Try[Int] = Success(1)
Inherited from:
MonadError
def background[A](fa: F[A]): Resource[F, F[Outcome[F, E, A]]]
Implicitly added by genConcurrentForEitherT

Returns a Resource that manages the concurrent execution of a fiber. The inner effect can be used to wait on the outcome of the child fiber; it is effectively a join.

Returns a Resource that manages the concurrent execution of a fiber. The inner effect can be used to wait on the outcome of the child fiber; it is effectively a join.

The child fiber is canceled in two cases: either the resource goes out of scope or the parent fiber is canceled. If the child fiber terminates before one of these cases occurs, then cancelation is a no-op. This avoids fiber leaks because the child fiber is always canceled before the parent fiber drops the reference to it.


 // Starts a fiber that continously prints "A".
 // After 10 seconds, the resource scope exits so the fiber is canceled.
 F.background(F.delay(println("A")).foreverM).use { _ =>
   F.sleep(10.seconds)
 }

Value parameters:
fa

the effect for the spawned fiber

Inherited from:
GenSpawn
def background[A](fa: F[A]): Resource[F, F[Outcome[F, E, A]]]
Implicitly added by genConcurrentForKleisli

Returns a Resource that manages the concurrent execution of a fiber. The inner effect can be used to wait on the outcome of the child fiber; it is effectively a join.

Returns a Resource that manages the concurrent execution of a fiber. The inner effect can be used to wait on the outcome of the child fiber; it is effectively a join.

The child fiber is canceled in two cases: either the resource goes out of scope or the parent fiber is canceled. If the child fiber terminates before one of these cases occurs, then cancelation is a no-op. This avoids fiber leaks because the child fiber is always canceled before the parent fiber drops the reference to it.


 // Starts a fiber that continously prints "A".
 // After 10 seconds, the resource scope exits so the fiber is canceled.
 F.background(F.delay(println("A")).foreverM).use { _ =>
   F.sleep(10.seconds)
 }

Value parameters:
fa

the effect for the spawned fiber

Inherited from:
GenSpawn
def background[A](fa: F[A]): Resource[F, F[Outcome[F, E, A]]]
Implicitly added by genConcurrentForOptionT

Returns a Resource that manages the concurrent execution of a fiber. The inner effect can be used to wait on the outcome of the child fiber; it is effectively a join.

Returns a Resource that manages the concurrent execution of a fiber. The inner effect can be used to wait on the outcome of the child fiber; it is effectively a join.

The child fiber is canceled in two cases: either the resource goes out of scope or the parent fiber is canceled. If the child fiber terminates before one of these cases occurs, then cancelation is a no-op. This avoids fiber leaks because the child fiber is always canceled before the parent fiber drops the reference to it.


 // Starts a fiber that continously prints "A".
 // After 10 seconds, the resource scope exits so the fiber is canceled.
 F.background(F.delay(println("A")).foreverM).use { _ =>
   F.sleep(10.seconds)
 }

Value parameters:
fa

the effect for the spawned fiber

Inherited from:
GenSpawn
def background[A](fa: F[A]): Resource[F, F[Outcome[F, E, A]]]

Returns a Resource that manages the concurrent execution of a fiber. The inner effect can be used to wait on the outcome of the child fiber; it is effectively a join.

Returns a Resource that manages the concurrent execution of a fiber. The inner effect can be used to wait on the outcome of the child fiber; it is effectively a join.

The child fiber is canceled in two cases: either the resource goes out of scope or the parent fiber is canceled. If the child fiber terminates before one of these cases occurs, then cancelation is a no-op. This avoids fiber leaks because the child fiber is always canceled before the parent fiber drops the reference to it.


 // Starts a fiber that continously prints "A".
 // After 10 seconds, the resource scope exits so the fiber is canceled.
 F.background(F.delay(println("A")).foreverM).use { _ =>
   F.sleep(10.seconds)
 }

Value parameters:
fa

the effect for the spawned fiber

Inherited from:
GenSpawn
def both[A, B](fa: F[A], fb: F[B]): F[(A, B)]
Implicitly added by genConcurrentForEitherT

Races the evaluation of two fibers and returns the result of both.

Races the evaluation of two fibers and returns the result of both.

The following rules describe the semantics of both:

  1. If the winner completes with Outcome.Succeeded, the race waits for the loser to complete. 2. If the winner completes with Outcome.Errored, the race raises the error. The loser is canceled. 3. If the winner completes with Outcome.Canceled, the loser and the race are canceled as well. 4. If the loser completes with Outcome.Succeeded, the race returns the successful value of both fibers. 5. If the loser completes with Outcome.Errored, the race returns the error. 6. If the loser completes with Outcome.Canceled, the race is canceled. 7. If the race is canceled before one or both participants complete, then whichever ones are incomplete are canceled. 8. If the race is masked and is canceled because one or both participants canceled, the fiber will block indefinitely.
Value parameters:
fa

the effect for the first racing fiber

fb

the effect for the second racing fiber

See also:

bothOutcome for a variant that returns the Outcome of both fibers.

Inherited from:
GenSpawn
def both[A, B](fa: F[A], fb: F[B]): F[(A, B)]
Implicitly added by genConcurrentForKleisli

Races the evaluation of two fibers and returns the result of both.

Races the evaluation of two fibers and returns the result of both.

The following rules describe the semantics of both:

  1. If the winner completes with Outcome.Succeeded, the race waits for the loser to complete. 2. If the winner completes with Outcome.Errored, the race raises the error. The loser is canceled. 3. If the winner completes with Outcome.Canceled, the loser and the race are canceled as well. 4. If the loser completes with Outcome.Succeeded, the race returns the successful value of both fibers. 5. If the loser completes with Outcome.Errored, the race returns the error. 6. If the loser completes with Outcome.Canceled, the race is canceled. 7. If the race is canceled before one or both participants complete, then whichever ones are incomplete are canceled. 8. If the race is masked and is canceled because one or both participants canceled, the fiber will block indefinitely.
Value parameters:
fa

the effect for the first racing fiber

fb

the effect for the second racing fiber

See also:

bothOutcome for a variant that returns the Outcome of both fibers.

Inherited from:
GenSpawn
def both[A, B](fa: F[A], fb: F[B]): F[(A, B)]
Implicitly added by genConcurrentForOptionT

Races the evaluation of two fibers and returns the result of both.

Races the evaluation of two fibers and returns the result of both.

The following rules describe the semantics of both:

  1. If the winner completes with Outcome.Succeeded, the race waits for the loser to complete. 2. If the winner completes with Outcome.Errored, the race raises the error. The loser is canceled. 3. If the winner completes with Outcome.Canceled, the loser and the race are canceled as well. 4. If the loser completes with Outcome.Succeeded, the race returns the successful value of both fibers. 5. If the loser completes with Outcome.Errored, the race returns the error. 6. If the loser completes with Outcome.Canceled, the race is canceled. 7. If the race is canceled before one or both participants complete, then whichever ones are incomplete are canceled. 8. If the race is masked and is canceled because one or both participants canceled, the fiber will block indefinitely.
Value parameters:
fa

the effect for the first racing fiber

fb

the effect for the second racing fiber

See also:

bothOutcome for a variant that returns the Outcome of both fibers.

Inherited from:
GenSpawn
def both[A, B](fa: F[A], fb: F[B]): F[(A, B)]

Races the evaluation of two fibers and returns the result of both.

Races the evaluation of two fibers and returns the result of both.

The following rules describe the semantics of both:

  1. If the winner completes with Outcome.Succeeded, the race waits for the loser to complete. 2. If the winner completes with Outcome.Errored, the race raises the error. The loser is canceled. 3. If the winner completes with Outcome.Canceled, the loser and the race are canceled as well. 4. If the loser completes with Outcome.Succeeded, the race returns the successful value of both fibers. 5. If the loser completes with Outcome.Errored, the race returns the error. 6. If the loser completes with Outcome.Canceled, the race is canceled. 7. If the race is canceled before one or both participants complete, then whichever ones are incomplete are canceled. 8. If the race is masked and is canceled because one or both participants canceled, the fiber will block indefinitely.
Value parameters:
fa

the effect for the first racing fiber

fb

the effect for the second racing fiber

See also:

bothOutcome for a variant that returns the Outcome of both fibers.

Inherited from:
GenSpawn
def bothOutcome[A, B](fa: F[A], fb: F[B]): F[(Outcome[F, E, A], Outcome[F, E, B])]
Implicitly added by genConcurrentForEitherT

Races the evaluation of two fibers and returns the Outcome of both. If the race is canceled before one or both participants complete, then then whichever ones are incomplete are canceled.

Races the evaluation of two fibers and returns the Outcome of both. If the race is canceled before one or both participants complete, then then whichever ones are incomplete are canceled.

Value parameters:
fa

the effect for the first racing fiber

fb

the effect for the second racing fiber

See also:

both for a simpler variant that returns the results of both fibers.

Inherited from:
GenSpawn
def bothOutcome[A, B](fa: F[A], fb: F[B]): F[(Outcome[F, E, A], Outcome[F, E, B])]
Implicitly added by genConcurrentForKleisli

Races the evaluation of two fibers and returns the Outcome of both. If the race is canceled before one or both participants complete, then then whichever ones are incomplete are canceled.

Races the evaluation of two fibers and returns the Outcome of both. If the race is canceled before one or both participants complete, then then whichever ones are incomplete are canceled.

Value parameters:
fa

the effect for the first racing fiber

fb

the effect for the second racing fiber

See also:

both for a simpler variant that returns the results of both fibers.

Inherited from:
GenSpawn
def bothOutcome[A, B](fa: F[A], fb: F[B]): F[(Outcome[F, E, A], Outcome[F, E, B])]
Implicitly added by genConcurrentForOptionT

Races the evaluation of two fibers and returns the Outcome of both. If the race is canceled before one or both participants complete, then then whichever ones are incomplete are canceled.

Races the evaluation of two fibers and returns the Outcome of both. If the race is canceled before one or both participants complete, then then whichever ones are incomplete are canceled.

Value parameters:
fa

the effect for the first racing fiber

fb

the effect for the second racing fiber

See also:

both for a simpler variant that returns the results of both fibers.

Inherited from:
GenSpawn
def bothOutcome[A, B](fa: F[A], fb: F[B]): F[(Outcome[F, E, A], Outcome[F, E, B])]

Races the evaluation of two fibers and returns the Outcome of both. If the race is canceled before one or both participants complete, then then whichever ones are incomplete are canceled.

Races the evaluation of two fibers and returns the Outcome of both. If the race is canceled before one or both participants complete, then then whichever ones are incomplete are canceled.

Value parameters:
fa

the effect for the first racing fiber

fb

the effect for the second racing fiber

See also:

both for a simpler variant that returns the results of both fibers.

Inherited from:
GenSpawn
def bracket[A, B](acquire: F[A])(use: A => F[B])(release: A => F[Unit]): F[B]
Implicitly added by genConcurrentForEitherT

A pattern for safely interacting with effectful lifecycles.

A pattern for safely interacting with effectful lifecycles.

If acquire completes successfully, use is called. If use succeeds, fails, or is canceled, release is guaranteed to be called exactly once.

acquire is uncancelable. release is uncancelable. use is cancelable by default, but can be masked.

Value parameters:
acquire

the lifecycle acquisition action

release

the lifecycle release action

use

the effect to which the lifecycle is scoped, whose result is the return value of this function

See also:

bracketCase for a more powerful variant

Resource for a composable datatype encoding of effectful lifecycles

Inherited from:
MonadCancel
def bracket[A, B](acquire: F[A])(use: A => F[B])(release: A => F[Unit]): F[B]
Implicitly added by genConcurrentForKleisli

A pattern for safely interacting with effectful lifecycles.

A pattern for safely interacting with effectful lifecycles.

If acquire completes successfully, use is called. If use succeeds, fails, or is canceled, release is guaranteed to be called exactly once.

acquire is uncancelable. release is uncancelable. use is cancelable by default, but can be masked.

Value parameters:
acquire

the lifecycle acquisition action

release

the lifecycle release action

use

the effect to which the lifecycle is scoped, whose result is the return value of this function

See also:

bracketCase for a more powerful variant

Resource for a composable datatype encoding of effectful lifecycles

Inherited from:
MonadCancel
def bracket[A, B](acquire: F[A])(use: A => F[B])(release: A => F[Unit]): F[B]
Implicitly added by genConcurrentForOptionT

A pattern for safely interacting with effectful lifecycles.

A pattern for safely interacting with effectful lifecycles.

If acquire completes successfully, use is called. If use succeeds, fails, or is canceled, release is guaranteed to be called exactly once.

acquire is uncancelable. release is uncancelable. use is cancelable by default, but can be masked.

Value parameters:
acquire

the lifecycle acquisition action

release

the lifecycle release action

use

the effect to which the lifecycle is scoped, whose result is the return value of this function

See also:

bracketCase for a more powerful variant

Resource for a composable datatype encoding of effectful lifecycles

Inherited from:
MonadCancel
def bracket[A, B](acquire: F[A])(use: A => F[B])(release: A => F[Unit]): F[B]

A pattern for safely interacting with effectful lifecycles.

A pattern for safely interacting with effectful lifecycles.

If acquire completes successfully, use is called. If use succeeds, fails, or is canceled, release is guaranteed to be called exactly once.

acquire is uncancelable. release is uncancelable. use is cancelable by default, but can be masked.

Value parameters:
acquire

the lifecycle acquisition action

release

the lifecycle release action

use

the effect to which the lifecycle is scoped, whose result is the return value of this function

See also:

bracketCase for a more powerful variant

Resource for a composable datatype encoding of effectful lifecycles

Inherited from:
MonadCancel
def bracketCase[A, B](acquire: F[A])(use: A => F[B])(release: (A, Outcome[F, E, B]) => F[Unit]): F[B]
Implicitly added by genConcurrentForEitherT

A pattern for safely interacting with effectful lifecycles.

A pattern for safely interacting with effectful lifecycles.

If acquire completes successfully, use is called. If use succeeds, fails, or is canceled, release is guaranteed to be called exactly once.

acquire is uncancelable. release is uncancelable. use is cancelable by default, but can be masked.

Value parameters:
acquire

the lifecycle acquisition action

release

the lifecycle release action which depends on the outcome of use

use

the effect to which the lifecycle is scoped, whose result is the return value of this function

See also:

bracketFull for a more powerful variant

Resource for a composable datatype encoding of effectful lifecycles

Inherited from:
MonadCancel
def bracketCase[A, B](acquire: F[A])(use: A => F[B])(release: (A, Outcome[F, E, B]) => F[Unit]): F[B]
Implicitly added by genConcurrentForKleisli

A pattern for safely interacting with effectful lifecycles.

A pattern for safely interacting with effectful lifecycles.

If acquire completes successfully, use is called. If use succeeds, fails, or is canceled, release is guaranteed to be called exactly once.

acquire is uncancelable. release is uncancelable. use is cancelable by default, but can be masked.

Value parameters:
acquire

the lifecycle acquisition action

release

the lifecycle release action which depends on the outcome of use

use

the effect to which the lifecycle is scoped, whose result is the return value of this function

See also:

bracketFull for a more powerful variant

Resource for a composable datatype encoding of effectful lifecycles

Inherited from:
MonadCancel
def bracketCase[A, B](acquire: F[A])(use: A => F[B])(release: (A, Outcome[F, E, B]) => F[Unit]): F[B]
Implicitly added by genConcurrentForOptionT

A pattern for safely interacting with effectful lifecycles.

A pattern for safely interacting with effectful lifecycles.

If acquire completes successfully, use is called. If use succeeds, fails, or is canceled, release is guaranteed to be called exactly once.

acquire is uncancelable. release is uncancelable. use is cancelable by default, but can be masked.

Value parameters:
acquire

the lifecycle acquisition action

release

the lifecycle release action which depends on the outcome of use

use

the effect to which the lifecycle is scoped, whose result is the return value of this function

See also:

bracketFull for a more powerful variant

Resource for a composable datatype encoding of effectful lifecycles

Inherited from:
MonadCancel
def bracketCase[A, B](acquire: F[A])(use: A => F[B])(release: (A, Outcome[F, E, B]) => F[Unit]): F[B]

A pattern for safely interacting with effectful lifecycles.

A pattern for safely interacting with effectful lifecycles.

If acquire completes successfully, use is called. If use succeeds, fails, or is canceled, release is guaranteed to be called exactly once.

acquire is uncancelable. release is uncancelable. use is cancelable by default, but can be masked.

Value parameters:
acquire

the lifecycle acquisition action

release

the lifecycle release action which depends on the outcome of use

use

the effect to which the lifecycle is scoped, whose result is the return value of this function

See also:

bracketFull for a more powerful variant

Resource for a composable datatype encoding of effectful lifecycles

Inherited from:
MonadCancel
def bracketFull[A, B](acquire: Poll[F] => F[A])(use: A => F[B])(release: (A, Outcome[F, E, B]) => F[Unit]): F[B]
Implicitly added by genConcurrentForEitherT

A pattern for safely interacting with effectful lifecycles.

A pattern for safely interacting with effectful lifecycles.

If acquire completes successfully, use is called. If use succeeds, fails, or is canceled, release is guaranteed to be called exactly once.

If use succeeds the returned value B is returned. If use returns an exception, the exception is returned.

acquire is uncancelable by default, but can be unmasked. release is uncancelable. use is cancelable by default, but can be masked.

Value parameters:
acquire

the lifecycle acquisition action which can be canceled

release

the lifecycle release action which depends on the outcome of use

use

the effect to which the lifecycle is scoped, whose result is the return value of this function

Inherited from:
MonadCancel
def bracketFull[A, B](acquire: Poll[F] => F[A])(use: A => F[B])(release: (A, Outcome[F, E, B]) => F[Unit]): F[B]
Implicitly added by genConcurrentForKleisli

A pattern for safely interacting with effectful lifecycles.

A pattern for safely interacting with effectful lifecycles.

If acquire completes successfully, use is called. If use succeeds, fails, or is canceled, release is guaranteed to be called exactly once.

If use succeeds the returned value B is returned. If use returns an exception, the exception is returned.

acquire is uncancelable by default, but can be unmasked. release is uncancelable. use is cancelable by default, but can be masked.

Value parameters:
acquire

the lifecycle acquisition action which can be canceled

release

the lifecycle release action which depends on the outcome of use

use

the effect to which the lifecycle is scoped, whose result is the return value of this function

Inherited from:
MonadCancel
def bracketFull[A, B](acquire: Poll[F] => F[A])(use: A => F[B])(release: (A, Outcome[F, E, B]) => F[Unit]): F[B]
Implicitly added by genConcurrentForOptionT

A pattern for safely interacting with effectful lifecycles.

A pattern for safely interacting with effectful lifecycles.

If acquire completes successfully, use is called. If use succeeds, fails, or is canceled, release is guaranteed to be called exactly once.

If use succeeds the returned value B is returned. If use returns an exception, the exception is returned.

acquire is uncancelable by default, but can be unmasked. release is uncancelable. use is cancelable by default, but can be masked.

Value parameters:
acquire

the lifecycle acquisition action which can be canceled

release

the lifecycle release action which depends on the outcome of use

use

the effect to which the lifecycle is scoped, whose result is the return value of this function

Inherited from:
MonadCancel
def bracketFull[A, B](acquire: Poll[F] => F[A])(use: A => F[B])(release: (A, Outcome[F, E, B]) => F[Unit]): F[B]

A pattern for safely interacting with effectful lifecycles.

A pattern for safely interacting with effectful lifecycles.

If acquire completes successfully, use is called. If use succeeds, fails, or is canceled, release is guaranteed to be called exactly once.

If use succeeds the returned value B is returned. If use returns an exception, the exception is returned.

acquire is uncancelable by default, but can be unmasked. release is uncancelable. use is cancelable by default, but can be masked.

Value parameters:
acquire

the lifecycle acquisition action which can be canceled

release

the lifecycle release action which depends on the outcome of use

use

the effect to which the lifecycle is scoped, whose result is the return value of this function

Inherited from:
MonadCancel
def canceled: F[Unit]
Implicitly added by genConcurrentForEitherT

An effect that requests self-cancelation on the current fiber.

An effect that requests self-cancelation on the current fiber.

In the following example, the fiber requests self-cancelation in a masked region, so cancelation is suppressed until the fiber is completely unmasked. fa will run but fb will not.


 F.uncancelable { _ =>
   F.canceled *> fa
 } *> fb

Inherited from:
MonadCancel
def canceled: F[Unit]
Implicitly added by genConcurrentForKleisli

An effect that requests self-cancelation on the current fiber.

An effect that requests self-cancelation on the current fiber.

In the following example, the fiber requests self-cancelation in a masked region, so cancelation is suppressed until the fiber is completely unmasked. fa will run but fb will not.


 F.uncancelable { _ =>
   F.canceled *> fa
 } *> fb

Inherited from:
MonadCancel
def canceled: F[Unit]
Implicitly added by genConcurrentForOptionT

An effect that requests self-cancelation on the current fiber.

An effect that requests self-cancelation on the current fiber.

In the following example, the fiber requests self-cancelation in a masked region, so cancelation is suppressed until the fiber is completely unmasked. fa will run but fb will not.


 F.uncancelable { _ =>
   F.canceled *> fa
 } *> fb

Inherited from:
MonadCancel
def canceled: F[Unit]

An effect that requests self-cancelation on the current fiber.

An effect that requests self-cancelation on the current fiber.

In the following example, the fiber requests self-cancelation in a masked region, so cancelation is suppressed until the fiber is completely unmasked. fa will run but fb will not.


 F.uncancelable { _ =>
   F.canceled *> fa
 } *> fb

Inherited from:
MonadCancel
def catchNonFatal[A](a: => A)(implicit ev: Throwable <:< E): F[A]
Implicitly added by genConcurrentForEitherT

Often E is Throwable. Here we try to call pure or catch and raise.

Often E is Throwable. Here we try to call pure or catch and raise.

Inherited from:
ApplicativeError
def catchNonFatal[A](a: => A)(implicit ev: Throwable <:< E): F[A]
Implicitly added by genConcurrentForKleisli

Often E is Throwable. Here we try to call pure or catch and raise.

Often E is Throwable. Here we try to call pure or catch and raise.

Inherited from:
ApplicativeError
def catchNonFatal[A](a: => A)(implicit ev: Throwable <:< E): F[A]
Implicitly added by genConcurrentForOptionT

Often E is Throwable. Here we try to call pure or catch and raise.

Often E is Throwable. Here we try to call pure or catch and raise.

Inherited from:
ApplicativeError
def catchNonFatal[A](a: => A)(implicit ev: Throwable <:< E): F[A]

Often E is Throwable. Here we try to call pure or catch and raise.

Often E is Throwable. Here we try to call pure or catch and raise.

Inherited from:
ApplicativeError
def catchNonFatalEval[A](a: Eval[A])(implicit ev: Throwable <:< E): F[A]
Implicitly added by genConcurrentForEitherT

Often E is Throwable. Here we try to call pure or catch and raise

Often E is Throwable. Here we try to call pure or catch and raise

Inherited from:
ApplicativeError
def catchNonFatalEval[A](a: Eval[A])(implicit ev: Throwable <:< E): F[A]
Implicitly added by genConcurrentForKleisli

Often E is Throwable. Here we try to call pure or catch and raise

Often E is Throwable. Here we try to call pure or catch and raise

Inherited from:
ApplicativeError
def catchNonFatalEval[A](a: Eval[A])(implicit ev: Throwable <:< E): F[A]
Implicitly added by genConcurrentForOptionT

Often E is Throwable. Here we try to call pure or catch and raise

Often E is Throwable. Here we try to call pure or catch and raise

Inherited from:
ApplicativeError
def catchNonFatalEval[A](a: Eval[A])(implicit ev: Throwable <:< E): F[A]

Often E is Throwable. Here we try to call pure or catch and raise

Often E is Throwable. Here we try to call pure or catch and raise

Inherited from:
ApplicativeError
def catchOnly[T >: Null <: Throwable]: CatchOnlyPartiallyApplied[T, F, E]
Implicitly added by genConcurrentForEitherT

Evaluates the specified block, catching exceptions of the specified type. Uncaught exceptions are propagated.

Evaluates the specified block, catching exceptions of the specified type. Uncaught exceptions are propagated.

Inherited from:
ApplicativeError
def catchOnly[T >: Null <: Throwable]: CatchOnlyPartiallyApplied[T, F, E]
Implicitly added by genConcurrentForKleisli

Evaluates the specified block, catching exceptions of the specified type. Uncaught exceptions are propagated.

Evaluates the specified block, catching exceptions of the specified type. Uncaught exceptions are propagated.

Inherited from:
ApplicativeError
def catchOnly[T >: Null <: Throwable]: CatchOnlyPartiallyApplied[T, F, E]
Implicitly added by genConcurrentForOptionT

Evaluates the specified block, catching exceptions of the specified type. Uncaught exceptions are propagated.

Evaluates the specified block, catching exceptions of the specified type. Uncaught exceptions are propagated.

Inherited from:
ApplicativeError
def catchOnly[T >: Null <: Throwable]: CatchOnlyPartiallyApplied[T, F, E]

Evaluates the specified block, catching exceptions of the specified type. Uncaught exceptions are propagated.

Evaluates the specified block, catching exceptions of the specified type. Uncaught exceptions are propagated.

Inherited from:
ApplicativeError
def cede: F[Unit]
Implicitly added by genConcurrentForEitherT

Introduces a fairness boundary that yields control back to the scheduler of the runtime system. This allows the carrier thread to resume execution of another waiting fiber.

Introduces a fairness boundary that yields control back to the scheduler of the runtime system. This allows the carrier thread to resume execution of another waiting fiber.

This function is primarily useful when performing long-running computation that is outside of the monadic context. For example:

 fa.map(data => expensiveWork(data))

In the above, we're assuming that expensiveWork is a function which is entirely compute-bound but very long-running. A good rule of thumb is to consider a function "expensive" when its runtime is around three or more orders of magnitude higher than the overhead of the map function itself (which runs in around 5 nanoseconds on modern hardware). Thus, any expensiveWork function which requires around 10 microseconds or longer to execute should be considered "long-running".

The danger is that these types of long-running actions outside of the monadic context can result in degraded fairness properties. The solution is to add an explicit cede both before and after the expensive operation:

 (fa <* F.cede).map(data => expensiveWork(data)) <* F.cede

Note that extremely long-running expensiveWork functions can still cause fairness issues, even when used with cede. This problem is somewhat fundamental to the nature of scheduling such computation on carrier threads. Whenever possible, it is best to break apart any such functions into multiple pieces invoked independently (e.g. via chained map calls) whenever the execution time exceeds five or six orders of magnitude beyond the overhead of map itself (around 1 millisecond on most hardware).

Note that cede is merely a hint to the runtime system; implementations have the liberty to interpret this method to their liking as long as it obeys the respective laws. For example, a lawful, but atypical, implementation of this function is F.unit, in which case the fairness boundary is a no-op.

Inherited from:
GenSpawn
def cede: F[Unit]
Implicitly added by genConcurrentForKleisli

Introduces a fairness boundary that yields control back to the scheduler of the runtime system. This allows the carrier thread to resume execution of another waiting fiber.

Introduces a fairness boundary that yields control back to the scheduler of the runtime system. This allows the carrier thread to resume execution of another waiting fiber.

This function is primarily useful when performing long-running computation that is outside of the monadic context. For example:

 fa.map(data => expensiveWork(data))

In the above, we're assuming that expensiveWork is a function which is entirely compute-bound but very long-running. A good rule of thumb is to consider a function "expensive" when its runtime is around three or more orders of magnitude higher than the overhead of the map function itself (which runs in around 5 nanoseconds on modern hardware). Thus, any expensiveWork function which requires around 10 microseconds or longer to execute should be considered "long-running".

The danger is that these types of long-running actions outside of the monadic context can result in degraded fairness properties. The solution is to add an explicit cede both before and after the expensive operation:

 (fa <* F.cede).map(data => expensiveWork(data)) <* F.cede

Note that extremely long-running expensiveWork functions can still cause fairness issues, even when used with cede. This problem is somewhat fundamental to the nature of scheduling such computation on carrier threads. Whenever possible, it is best to break apart any such functions into multiple pieces invoked independently (e.g. via chained map calls) whenever the execution time exceeds five or six orders of magnitude beyond the overhead of map itself (around 1 millisecond on most hardware).

Note that cede is merely a hint to the runtime system; implementations have the liberty to interpret this method to their liking as long as it obeys the respective laws. For example, a lawful, but atypical, implementation of this function is F.unit, in which case the fairness boundary is a no-op.

Inherited from:
GenSpawn
def cede: F[Unit]
Implicitly added by genConcurrentForOptionT

Introduces a fairness boundary that yields control back to the scheduler of the runtime system. This allows the carrier thread to resume execution of another waiting fiber.

Introduces a fairness boundary that yields control back to the scheduler of the runtime system. This allows the carrier thread to resume execution of another waiting fiber.

This function is primarily useful when performing long-running computation that is outside of the monadic context. For example:

 fa.map(data => expensiveWork(data))

In the above, we're assuming that expensiveWork is a function which is entirely compute-bound but very long-running. A good rule of thumb is to consider a function "expensive" when its runtime is around three or more orders of magnitude higher than the overhead of the map function itself (which runs in around 5 nanoseconds on modern hardware). Thus, any expensiveWork function which requires around 10 microseconds or longer to execute should be considered "long-running".

The danger is that these types of long-running actions outside of the monadic context can result in degraded fairness properties. The solution is to add an explicit cede both before and after the expensive operation:

 (fa <* F.cede).map(data => expensiveWork(data)) <* F.cede

Note that extremely long-running expensiveWork functions can still cause fairness issues, even when used with cede. This problem is somewhat fundamental to the nature of scheduling such computation on carrier threads. Whenever possible, it is best to break apart any such functions into multiple pieces invoked independently (e.g. via chained map calls) whenever the execution time exceeds five or six orders of magnitude beyond the overhead of map itself (around 1 millisecond on most hardware).

Note that cede is merely a hint to the runtime system; implementations have the liberty to interpret this method to their liking as long as it obeys the respective laws. For example, a lawful, but atypical, implementation of this function is F.unit, in which case the fairness boundary is a no-op.

Inherited from:
GenSpawn
def cede: F[Unit]

Introduces a fairness boundary that yields control back to the scheduler of the runtime system. This allows the carrier thread to resume execution of another waiting fiber.

Introduces a fairness boundary that yields control back to the scheduler of the runtime system. This allows the carrier thread to resume execution of another waiting fiber.

This function is primarily useful when performing long-running computation that is outside of the monadic context. For example:

 fa.map(data => expensiveWork(data))

In the above, we're assuming that expensiveWork is a function which is entirely compute-bound but very long-running. A good rule of thumb is to consider a function "expensive" when its runtime is around three or more orders of magnitude higher than the overhead of the map function itself (which runs in around 5 nanoseconds on modern hardware). Thus, any expensiveWork function which requires around 10 microseconds or longer to execute should be considered "long-running".

The danger is that these types of long-running actions outside of the monadic context can result in degraded fairness properties. The solution is to add an explicit cede both before and after the expensive operation:

 (fa <* F.cede).map(data => expensiveWork(data)) <* F.cede

Note that extremely long-running expensiveWork functions can still cause fairness issues, even when used with cede. This problem is somewhat fundamental to the nature of scheduling such computation on carrier threads. Whenever possible, it is best to break apart any such functions into multiple pieces invoked independently (e.g. via chained map calls) whenever the execution time exceeds five or six orders of magnitude beyond the overhead of map itself (around 1 millisecond on most hardware).

Note that cede is merely a hint to the runtime system; implementations have the liberty to interpret this method to their liking as long as it obeys the respective laws. For example, a lawful, but atypical, implementation of this function is F.unit, in which case the fairness boundary is a no-op.

Inherited from:
GenSpawn
def compose[G[_] : Applicative]: Applicative[[α] =>> F[G[α]]]
Implicitly added by genConcurrentForEitherT

Compose an Applicative[F] and an Applicative[G] into an Applicative[λ[α => F[G[α]]]].

Compose an Applicative[F] and an Applicative[G] into an Applicative[λ[α => F[G[α]]]].

Example:

scala> import cats.implicits._

scala> val alo = Applicative[List].compose[Option]

scala> alo.pure(3)
res0: List[Option[Int]] = List(Some(3))

scala> alo.product(List(None, Some(true), Some(false)), List(Some(2), None))
res1: List[Option[(Boolean, Int)]] = List(None, None, Some((true,2)), None, Some((false,2)), None)
Inherited from:
Applicative
def compose[G[_] : Invariant]: Invariant[[α] =>> F[G[α]]]
Implicitly added by genConcurrentForEitherT

Compose Invariant F[_] and G[_] then produce Invariant[F[G[_]]] using their imap.

Compose Invariant F[_] and G[_] then produce Invariant[F[G[_]]] using their imap.

Example:

scala> import cats.implicits._
scala> import scala.concurrent.duration._

scala> val durSemigroupList: Semigroup[List[FiniteDuration]] =
    | Invariant[Semigroup].compose[List].imap(Semigroup[List[Long]])(Duration.fromNanos)(_.toNanos)
scala> durSemigroupList.combine(List(2.seconds, 3.seconds), List(4.seconds))
res1: List[FiniteDuration] = List(2 seconds, 3 seconds, 4 seconds)
Inherited from:
Invariant
def compose[G[_] : Apply]: Apply[[α] =>> F[G[α]]]
Implicitly added by genConcurrentForEitherT

Compose an Apply[F] and an Apply[G] into an Apply[λ[α => F[G[α]]]].

Compose an Apply[F] and an Apply[G] into an Apply[λ[α => F[G[α]]]].

Example:

scala> import cats.implicits._

scala> val alo = Apply[List].compose[Option]

scala> alo.product(List(None, Some(true), Some(false)), List(Some(2), None))
res1: List[Option[(Boolean, Int)]] = List(None, None, Some((true,2)), None, Some((false,2)), None)
Inherited from:
Apply
def compose[G[_] : Functor]: Functor[[α] =>> F[G[α]]]
Implicitly added by genConcurrentForEitherT
Inherited from:
Functor
def compose[G[_] : Applicative]: Applicative[[α] =>> F[G[α]]]
Implicitly added by genConcurrentForKleisli

Compose an Applicative[F] and an Applicative[G] into an Applicative[λ[α => F[G[α]]]].

Compose an Applicative[F] and an Applicative[G] into an Applicative[λ[α => F[G[α]]]].

Example:

scala> import cats.implicits._

scala> val alo = Applicative[List].compose[Option]

scala> alo.pure(3)
res0: List[Option[Int]] = List(Some(3))

scala> alo.product(List(None, Some(true), Some(false)), List(Some(2), None))
res1: List[Option[(Boolean, Int)]] = List(None, None, Some((true,2)), None, Some((false,2)), None)
Inherited from:
Applicative
def compose[G[_] : Invariant]: Invariant[[α] =>> F[G[α]]]
Implicitly added by genConcurrentForKleisli

Compose Invariant F[_] and G[_] then produce Invariant[F[G[_]]] using their imap.

Compose Invariant F[_] and G[_] then produce Invariant[F[G[_]]] using their imap.

Example:

scala> import cats.implicits._
scala> import scala.concurrent.duration._

scala> val durSemigroupList: Semigroup[List[FiniteDuration]] =
    | Invariant[Semigroup].compose[List].imap(Semigroup[List[Long]])(Duration.fromNanos)(_.toNanos)
scala> durSemigroupList.combine(List(2.seconds, 3.seconds), List(4.seconds))
res1: List[FiniteDuration] = List(2 seconds, 3 seconds, 4 seconds)
Inherited from:
Invariant
def compose[G[_] : Apply]: Apply[[α] =>> F[G[α]]]
Implicitly added by genConcurrentForKleisli

Compose an Apply[F] and an Apply[G] into an Apply[λ[α => F[G[α]]]].

Compose an Apply[F] and an Apply[G] into an Apply[λ[α => F[G[α]]]].

Example:

scala> import cats.implicits._

scala> val alo = Apply[List].compose[Option]

scala> alo.product(List(None, Some(true), Some(false)), List(Some(2), None))
res1: List[Option[(Boolean, Int)]] = List(None, None, Some((true,2)), None, Some((false,2)), None)
Inherited from:
Apply
def compose[G[_] : Functor]: Functor[[α] =>> F[G[α]]]
Implicitly added by genConcurrentForKleisli
Inherited from:
Functor
def compose[G[_] : Applicative]: Applicative[[α] =>> F[G[α]]]
Implicitly added by genConcurrentForOptionT

Compose an Applicative[F] and an Applicative[G] into an Applicative[λ[α => F[G[α]]]].

Compose an Applicative[F] and an Applicative[G] into an Applicative[λ[α => F[G[α]]]].

Example:

scala> import cats.implicits._

scala> val alo = Applicative[List].compose[Option]

scala> alo.pure(3)
res0: List[Option[Int]] = List(Some(3))

scala> alo.product(List(None, Some(true), Some(false)), List(Some(2), None))
res1: List[Option[(Boolean, Int)]] = List(None, None, Some((true,2)), None, Some((false,2)), None)
Inherited from:
Applicative
def compose[G[_] : Invariant]: Invariant[[α] =>> F[G[α]]]
Implicitly added by genConcurrentForOptionT

Compose Invariant F[_] and G[_] then produce Invariant[F[G[_]]] using their imap.

Compose Invariant F[_] and G[_] then produce Invariant[F[G[_]]] using their imap.

Example:

scala> import cats.implicits._
scala> import scala.concurrent.duration._

scala> val durSemigroupList: Semigroup[List[FiniteDuration]] =
    | Invariant[Semigroup].compose[List].imap(Semigroup[List[Long]])(Duration.fromNanos)(_.toNanos)
scala> durSemigroupList.combine(List(2.seconds, 3.seconds), List(4.seconds))
res1: List[FiniteDuration] = List(2 seconds, 3 seconds, 4 seconds)
Inherited from:
Invariant
def compose[G[_] : Apply]: Apply[[α] =>> F[G[α]]]
Implicitly added by genConcurrentForOptionT

Compose an Apply[F] and an Apply[G] into an Apply[λ[α => F[G[α]]]].

Compose an Apply[F] and an Apply[G] into an Apply[λ[α => F[G[α]]]].

Example:

scala> import cats.implicits._

scala> val alo = Apply[List].compose[Option]

scala> alo.product(List(None, Some(true), Some(false)), List(Some(2), None))
res1: List[Option[(Boolean, Int)]] = List(None, None, Some((true,2)), None, Some((false,2)), None)
Inherited from:
Apply
def compose[G[_] : Functor]: Functor[[α] =>> F[G[α]]]
Implicitly added by genConcurrentForOptionT
Inherited from:
Functor
def compose[G[_] : Applicative]: Applicative[[α] =>> F[G[α]]]

Compose an Applicative[F] and an Applicative[G] into an Applicative[λ[α => F[G[α]]]].

Compose an Applicative[F] and an Applicative[G] into an Applicative[λ[α => F[G[α]]]].

Example:

scala> import cats.implicits._

scala> val alo = Applicative[List].compose[Option]

scala> alo.pure(3)
res0: List[Option[Int]] = List(Some(3))

scala> alo.product(List(None, Some(true), Some(false)), List(Some(2), None))
res1: List[Option[(Boolean, Int)]] = List(None, None, Some((true,2)), None, Some((false,2)), None)
Inherited from:
Applicative
def compose[G[_] : Invariant]: Invariant[[α] =>> F[G[α]]]

Compose Invariant F[_] and G[_] then produce Invariant[F[G[_]]] using their imap.

Compose Invariant F[_] and G[_] then produce Invariant[F[G[_]]] using their imap.

Example:

scala> import cats.implicits._
scala> import scala.concurrent.duration._

scala> val durSemigroupList: Semigroup[List[FiniteDuration]] =
    | Invariant[Semigroup].compose[List].imap(Semigroup[List[Long]])(Duration.fromNanos)(_.toNanos)
scala> durSemigroupList.combine(List(2.seconds, 3.seconds), List(4.seconds))
res1: List[FiniteDuration] = List(2 seconds, 3 seconds, 4 seconds)
Inherited from:
Invariant
def compose[G[_] : Apply]: Apply[[α] =>> F[G[α]]]

Compose an Apply[F] and an Apply[G] into an Apply[λ[α => F[G[α]]]].

Compose an Apply[F] and an Apply[G] into an Apply[λ[α => F[G[α]]]].

Example:

scala> import cats.implicits._

scala> val alo = Apply[List].compose[Option]

scala> alo.product(List(None, Some(true), Some(false)), List(Some(2), None))
res1: List[Option[(Boolean, Int)]] = List(None, None, Some((true,2)), None, Some((false,2)), None)
Inherited from:
Apply
def compose[G[_] : Functor]: Functor[[α] =>> F[G[α]]]
Inherited from:
Functor
def composeApply[G[_] : Apply]: InvariantSemigroupal[[α] =>> F[G[α]]]
Implicitly added by genConcurrentForEitherT
Inherited from:
InvariantSemigroupal
def composeApply[G[_] : Apply]: InvariantSemigroupal[[α] =>> F[G[α]]]
Implicitly added by genConcurrentForKleisli
Inherited from:
InvariantSemigroupal
def composeApply[G[_] : Apply]: InvariantSemigroupal[[α] =>> F[G[α]]]
Implicitly added by genConcurrentForOptionT
Inherited from:
InvariantSemigroupal
def composeApply[G[_] : Apply]: InvariantSemigroupal[[α] =>> F[G[α]]]
Inherited from:
InvariantSemigroupal
override def composeContravariant[G[_] : Contravariant]: Contravariant[[α] =>> F[G[α]]]
Definition Classes
Inherited from:
Functor
Implicitly added by genConcurrentForEitherT

Compose an Applicative[F] and a ContravariantMonoidal[G] into a ContravariantMonoidal[λ[α => F[G[α]]]].

Compose an Applicative[F] and a ContravariantMonoidal[G] into a ContravariantMonoidal[λ[α => F[G[α]]]].

Example:

scala> import cats.kernel.Comparison
scala> import cats.implicits._

// compares strings by alphabetical order
scala> val alpha: Order[String] = Order[String]

// compares strings by their length
scala> val strLength: Order[String] = Order.by[String, Int](_.length)

scala> val stringOrders: List[Order[String]] = List(alpha, strLength)

// first comparison is with alpha order, second is with string length
scala> stringOrders.map(o => o.comparison("abc", "de"))
res0: List[Comparison] = List(LessThan, GreaterThan)

scala> val le = Applicative[List].composeContravariantMonoidal[Order]

// create Int orders that convert ints to strings and then use the string orders
scala> val intOrders: List[Order[Int]] = le.contramap(stringOrders)(_.toString)

// first comparison is with alpha order, second is with string length
scala> intOrders.map(o => o.comparison(12, 3))
res1: List[Comparison] = List(LessThan, GreaterThan)

// create the `product` of the string order list and the int order list
// `p` contains a list of the following orders:
// 1. (alpha comparison on strings followed by alpha comparison on ints)
// 2. (alpha comparison on strings followed by length comparison on ints)
// 3. (length comparison on strings followed by alpha comparison on ints)
// 4. (length comparison on strings followed by length comparison on ints)
scala> val p: List[Order[(String, Int)]] = le.product(stringOrders, intOrders)

scala> p.map(o => o.comparison(("abc", 12), ("def", 3)))
res2: List[Comparison] = List(LessThan, LessThan, LessThan, GreaterThan)
Inherited from:
Applicative
Implicitly added by genConcurrentForKleisli

Compose an Applicative[F] and a ContravariantMonoidal[G] into a ContravariantMonoidal[λ[α => F[G[α]]]].

Compose an Applicative[F] and a ContravariantMonoidal[G] into a ContravariantMonoidal[λ[α => F[G[α]]]].

Example:

scala> import cats.kernel.Comparison
scala> import cats.implicits._

// compares strings by alphabetical order
scala> val alpha: Order[String] = Order[String]

// compares strings by their length
scala> val strLength: Order[String] = Order.by[String, Int](_.length)

scala> val stringOrders: List[Order[String]] = List(alpha, strLength)

// first comparison is with alpha order, second is with string length
scala> stringOrders.map(o => o.comparison("abc", "de"))
res0: List[Comparison] = List(LessThan, GreaterThan)

scala> val le = Applicative[List].composeContravariantMonoidal[Order]

// create Int orders that convert ints to strings and then use the string orders
scala> val intOrders: List[Order[Int]] = le.contramap(stringOrders)(_.toString)

// first comparison is with alpha order, second is with string length
scala> intOrders.map(o => o.comparison(12, 3))
res1: List[Comparison] = List(LessThan, GreaterThan)

// create the `product` of the string order list and the int order list
// `p` contains a list of the following orders:
// 1. (alpha comparison on strings followed by alpha comparison on ints)
// 2. (alpha comparison on strings followed by length comparison on ints)
// 3. (length comparison on strings followed by alpha comparison on ints)
// 4. (length comparison on strings followed by length comparison on ints)
scala> val p: List[Order[(String, Int)]] = le.product(stringOrders, intOrders)

scala> p.map(o => o.comparison(("abc", 12), ("def", 3)))
res2: List[Comparison] = List(LessThan, LessThan, LessThan, GreaterThan)
Inherited from:
Applicative
Implicitly added by genConcurrentForOptionT

Compose an Applicative[F] and a ContravariantMonoidal[G] into a ContravariantMonoidal[λ[α => F[G[α]]]].

Compose an Applicative[F] and a ContravariantMonoidal[G] into a ContravariantMonoidal[λ[α => F[G[α]]]].

Example:

scala> import cats.kernel.Comparison
scala> import cats.implicits._

// compares strings by alphabetical order
scala> val alpha: Order[String] = Order[String]

// compares strings by their length
scala> val strLength: Order[String] = Order.by[String, Int](_.length)

scala> val stringOrders: List[Order[String]] = List(alpha, strLength)

// first comparison is with alpha order, second is with string length
scala> stringOrders.map(o => o.comparison("abc", "de"))
res0: List[Comparison] = List(LessThan, GreaterThan)

scala> val le = Applicative[List].composeContravariantMonoidal[Order]

// create Int orders that convert ints to strings and then use the string orders
scala> val intOrders: List[Order[Int]] = le.contramap(stringOrders)(_.toString)

// first comparison is with alpha order, second is with string length
scala> intOrders.map(o => o.comparison(12, 3))
res1: List[Comparison] = List(LessThan, GreaterThan)

// create the `product` of the string order list and the int order list
// `p` contains a list of the following orders:
// 1. (alpha comparison on strings followed by alpha comparison on ints)
// 2. (alpha comparison on strings followed by length comparison on ints)
// 3. (length comparison on strings followed by alpha comparison on ints)
// 4. (length comparison on strings followed by length comparison on ints)
scala> val p: List[Order[(String, Int)]] = le.product(stringOrders, intOrders)

scala> p.map(o => o.comparison(("abc", 12), ("def", 3)))
res2: List[Comparison] = List(LessThan, LessThan, LessThan, GreaterThan)
Inherited from:
Applicative

Compose an Applicative[F] and a ContravariantMonoidal[G] into a ContravariantMonoidal[λ[α => F[G[α]]]].

Compose an Applicative[F] and a ContravariantMonoidal[G] into a ContravariantMonoidal[λ[α => F[G[α]]]].

Example:

scala> import cats.kernel.Comparison
scala> import cats.implicits._

// compares strings by alphabetical order
scala> val alpha: Order[String] = Order[String]

// compares strings by their length
scala> val strLength: Order[String] = Order.by[String, Int](_.length)

scala> val stringOrders: List[Order[String]] = List(alpha, strLength)

// first comparison is with alpha order, second is with string length
scala> stringOrders.map(o => o.comparison("abc", "de"))
res0: List[Comparison] = List(LessThan, GreaterThan)

scala> val le = Applicative[List].composeContravariantMonoidal[Order]

// create Int orders that convert ints to strings and then use the string orders
scala> val intOrders: List[Order[Int]] = le.contramap(stringOrders)(_.toString)

// first comparison is with alpha order, second is with string length
scala> intOrders.map(o => o.comparison(12, 3))
res1: List[Comparison] = List(LessThan, GreaterThan)

// create the `product` of the string order list and the int order list
// `p` contains a list of the following orders:
// 1. (alpha comparison on strings followed by alpha comparison on ints)
// 2. (alpha comparison on strings followed by length comparison on ints)
// 3. (length comparison on strings followed by alpha comparison on ints)
// 4. (length comparison on strings followed by length comparison on ints)
scala> val p: List[Order[(String, Int)]] = le.product(stringOrders, intOrders)

scala> p.map(o => o.comparison(("abc", 12), ("def", 3)))
res2: List[Comparison] = List(LessThan, LessThan, LessThan, GreaterThan)
Inherited from:
Applicative
def composeFunctor[G[_] : Functor]: Invariant[[α] =>> F[G[α]]]
Implicitly added by genConcurrentForEitherT

Compose Invariant F[_] and Functor G[_] then produce Invariant[F[G[_]]] using F's imap and G's map.

Compose Invariant F[_] and Functor G[_] then produce Invariant[F[G[_]]] using F's imap and G's map.

Example:

scala> import cats.implicits._
scala> import scala.concurrent.duration._

scala> val durSemigroupList: Semigroup[List[FiniteDuration]] =
    | Invariant[Semigroup]
    |   .composeFunctor[List]
    |   .imap(Semigroup[List[Long]])(Duration.fromNanos)(_.toNanos)
scala> durSemigroupList.combine(List(2.seconds, 3.seconds), List(4.seconds))
res1: List[FiniteDuration] = List(2 seconds, 3 seconds, 4 seconds)
Inherited from:
Invariant
def composeFunctor[G[_] : Functor]: Invariant[[α] =>> F[G[α]]]
Implicitly added by genConcurrentForKleisli

Compose Invariant F[_] and Functor G[_] then produce Invariant[F[G[_]]] using F's imap and G's map.

Compose Invariant F[_] and Functor G[_] then produce Invariant[F[G[_]]] using F's imap and G's map.

Example:

scala> import cats.implicits._
scala> import scala.concurrent.duration._

scala> val durSemigroupList: Semigroup[List[FiniteDuration]] =
    | Invariant[Semigroup]
    |   .composeFunctor[List]
    |   .imap(Semigroup[List[Long]])(Duration.fromNanos)(_.toNanos)
scala> durSemigroupList.combine(List(2.seconds, 3.seconds), List(4.seconds))
res1: List[FiniteDuration] = List(2 seconds, 3 seconds, 4 seconds)
Inherited from:
Invariant
def composeFunctor[G[_] : Functor]: Invariant[[α] =>> F[G[α]]]
Implicitly added by genConcurrentForOptionT

Compose Invariant F[_] and Functor G[_] then produce Invariant[F[G[_]]] using F's imap and G's map.

Compose Invariant F[_] and Functor G[_] then produce Invariant[F[G[_]]] using F's imap and G's map.

Example:

scala> import cats.implicits._
scala> import scala.concurrent.duration._

scala> val durSemigroupList: Semigroup[List[FiniteDuration]] =
    | Invariant[Semigroup]
    |   .composeFunctor[List]
    |   .imap(Semigroup[List[Long]])(Duration.fromNanos)(_.toNanos)
scala> durSemigroupList.combine(List(2.seconds, 3.seconds), List(4.seconds))
res1: List[FiniteDuration] = List(2 seconds, 3 seconds, 4 seconds)
Inherited from:
Invariant
def composeFunctor[G[_] : Functor]: Invariant[[α] =>> F[G[α]]]

Compose Invariant F[_] and Functor G[_] then produce Invariant[F[G[_]]] using F's imap and G's map.

Compose Invariant F[_] and Functor G[_] then produce Invariant[F[G[_]]] using F's imap and G's map.

Example:

scala> import cats.implicits._
scala> import scala.concurrent.duration._

scala> val durSemigroupList: Semigroup[List[FiniteDuration]] =
    | Invariant[Semigroup]
    |   .composeFunctor[List]
    |   .imap(Semigroup[List[Long]])(Duration.fromNanos)(_.toNanos)
scala> durSemigroupList.combine(List(2.seconds, 3.seconds), List(4.seconds))
res1: List[FiniteDuration] = List(2 seconds, 3 seconds, 4 seconds)
Inherited from:
Invariant
def ensure[A](fa: F[A])(error: => E)(predicate: A => Boolean): F[A]
Implicitly added by genConcurrentForEitherT

Turns a successful value into an error if it does not satisfy a given predicate.

Turns a successful value into an error if it does not satisfy a given predicate.

Inherited from:
MonadError
def ensure[A](fa: F[A])(error: => E)(predicate: A => Boolean): F[A]
Implicitly added by genConcurrentForKleisli

Turns a successful value into an error if it does not satisfy a given predicate.

Turns a successful value into an error if it does not satisfy a given predicate.

Inherited from:
MonadError
def ensure[A](fa: F[A])(error: => E)(predicate: A => Boolean): F[A]
Implicitly added by genConcurrentForOptionT

Turns a successful value into an error if it does not satisfy a given predicate.

Turns a successful value into an error if it does not satisfy a given predicate.

Inherited from:
MonadError
def ensure[A](fa: F[A])(error: => E)(predicate: A => Boolean): F[A]

Turns a successful value into an error if it does not satisfy a given predicate.

Turns a successful value into an error if it does not satisfy a given predicate.

Inherited from:
MonadError
def ensureOr[A](fa: F[A])(error: A => E)(predicate: A => Boolean): F[A]
Implicitly added by genConcurrentForEitherT

Turns a successful value into an error specified by the error function if it does not satisfy a given predicate.

Turns a successful value into an error specified by the error function if it does not satisfy a given predicate.

Inherited from:
MonadError
def ensureOr[A](fa: F[A])(error: A => E)(predicate: A => Boolean): F[A]
Implicitly added by genConcurrentForKleisli

Turns a successful value into an error specified by the error function if it does not satisfy a given predicate.

Turns a successful value into an error specified by the error function if it does not satisfy a given predicate.

Inherited from:
MonadError
def ensureOr[A](fa: F[A])(error: A => E)(predicate: A => Boolean): F[A]
Implicitly added by genConcurrentForOptionT

Turns a successful value into an error specified by the error function if it does not satisfy a given predicate.

Turns a successful value into an error specified by the error function if it does not satisfy a given predicate.

Inherited from:
MonadError
def ensureOr[A](fa: F[A])(error: A => E)(predicate: A => Boolean): F[A]

Turns a successful value into an error specified by the error function if it does not satisfy a given predicate.

Turns a successful value into an error specified by the error function if it does not satisfy a given predicate.

Inherited from:
MonadError
def flatMap[A, B](fa: F[A])(f: A => F[B]): F[B]
Implicitly added by genConcurrentForEitherT
Inherited from:
FlatMap
def flatMap[A, B](fa: F[A])(f: A => F[B]): F[B]
Implicitly added by genConcurrentForKleisli
Inherited from:
FlatMap
def flatMap[A, B](fa: F[A])(f: A => F[B]): F[B]
Implicitly added by genConcurrentForOptionT
Inherited from:
FlatMap
def flatMap[A, B](fa: F[A])(f: A => F[B]): F[B]
Inherited from:
FlatMap
def flatMap10[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9) => F[Z]): F[Z]
Implicitly added by genConcurrentForEitherT
Inherited from:
FlatMapArityFunctions
def flatMap10[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9) => F[Z]): F[Z]
Implicitly added by genConcurrentForKleisli
Inherited from:
FlatMapArityFunctions
def flatMap10[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9) => F[Z]): F[Z]
Implicitly added by genConcurrentForOptionT
Inherited from:
FlatMapArityFunctions
def flatMap10[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9) => F[Z]): F[Z]
Inherited from:
FlatMapArityFunctions
def flatMap11[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10) => F[Z]): F[Z]
Implicitly added by genConcurrentForEitherT
Inherited from:
FlatMapArityFunctions
def flatMap11[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10) => F[Z]): F[Z]
Implicitly added by genConcurrentForKleisli
Inherited from:
FlatMapArityFunctions
def flatMap11[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10) => F[Z]): F[Z]
Implicitly added by genConcurrentForOptionT
Inherited from:
FlatMapArityFunctions
def flatMap11[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10) => F[Z]): F[Z]
Inherited from:
FlatMapArityFunctions
def flatMap12[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11) => F[Z]): F[Z]
Implicitly added by genConcurrentForEitherT
Inherited from:
FlatMapArityFunctions
def flatMap12[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11) => F[Z]): F[Z]
Implicitly added by genConcurrentForKleisli
Inherited from:
FlatMapArityFunctions
def flatMap12[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11) => F[Z]): F[Z]
Implicitly added by genConcurrentForOptionT
Inherited from:
FlatMapArityFunctions
def flatMap12[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11) => F[Z]): F[Z]
Inherited from:
FlatMapArityFunctions
def flatMap13[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12) => F[Z]): F[Z]
Implicitly added by genConcurrentForEitherT
Inherited from:
FlatMapArityFunctions
def flatMap13[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12) => F[Z]): F[Z]
Implicitly added by genConcurrentForKleisli
Inherited from:
FlatMapArityFunctions
def flatMap13[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12) => F[Z]): F[Z]
Implicitly added by genConcurrentForOptionT
Inherited from:
FlatMapArityFunctions
def flatMap13[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12) => F[Z]): F[Z]
Inherited from:
FlatMapArityFunctions
def flatMap14[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13) => F[Z]): F[Z]
Implicitly added by genConcurrentForEitherT
Inherited from:
FlatMapArityFunctions
def flatMap14[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13) => F[Z]): F[Z]
Implicitly added by genConcurrentForKleisli
Inherited from:
FlatMapArityFunctions
def flatMap14[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13) => F[Z]): F[Z]
Implicitly added by genConcurrentForOptionT
Inherited from:
FlatMapArityFunctions
def flatMap14[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13) => F[Z]): F[Z]
Inherited from:
FlatMapArityFunctions
def flatMap15[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14) => F[Z]): F[Z]
Implicitly added by genConcurrentForEitherT
Inherited from:
FlatMapArityFunctions
def flatMap15[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14) => F[Z]): F[Z]
Implicitly added by genConcurrentForKleisli
Inherited from:
FlatMapArityFunctions
def flatMap15[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14) => F[Z]): F[Z]
Implicitly added by genConcurrentForOptionT
Inherited from:
FlatMapArityFunctions
def flatMap15[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14) => F[Z]): F[Z]
Inherited from:
FlatMapArityFunctions
def flatMap16[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15) => F[Z]): F[Z]
Implicitly added by genConcurrentForEitherT
Inherited from:
FlatMapArityFunctions
def flatMap16[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15) => F[Z]): F[Z]
Implicitly added by genConcurrentForKleisli
Inherited from:
FlatMapArityFunctions
def flatMap16[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15) => F[Z]): F[Z]
Implicitly added by genConcurrentForOptionT
Inherited from:
FlatMapArityFunctions
def flatMap16[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15) => F[Z]): F[Z]
Inherited from:
FlatMapArityFunctions
def flatMap17[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16) => F[Z]): F[Z]
Implicitly added by genConcurrentForEitherT
Inherited from:
FlatMapArityFunctions
def flatMap17[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16) => F[Z]): F[Z]
Implicitly added by genConcurrentForKleisli
Inherited from:
FlatMapArityFunctions
def flatMap17[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16) => F[Z]): F[Z]
Implicitly added by genConcurrentForOptionT
Inherited from:
FlatMapArityFunctions
def flatMap17[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16) => F[Z]): F[Z]
Inherited from:
FlatMapArityFunctions
def flatMap18[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17) => F[Z]): F[Z]
Implicitly added by genConcurrentForEitherT
Inherited from:
FlatMapArityFunctions
def flatMap18[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17) => F[Z]): F[Z]
Implicitly added by genConcurrentForKleisli
Inherited from:
FlatMapArityFunctions
def flatMap18[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17) => F[Z]): F[Z]
Implicitly added by genConcurrentForOptionT
Inherited from:
FlatMapArityFunctions
def flatMap18[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17) => F[Z]): F[Z]
Inherited from:
FlatMapArityFunctions
def flatMap19[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18) => F[Z]): F[Z]
Implicitly added by genConcurrentForEitherT
Inherited from:
FlatMapArityFunctions
def flatMap19[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18) => F[Z]): F[Z]
Implicitly added by genConcurrentForKleisli
Inherited from:
FlatMapArityFunctions
def flatMap19[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18) => F[Z]): F[Z]
Implicitly added by genConcurrentForOptionT
Inherited from:
FlatMapArityFunctions
def flatMap19[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18) => F[Z]): F[Z]
Inherited from:
FlatMapArityFunctions
def flatMap2[A0, A1, Z](f0: F[A0], f1: F[A1])(f: (A0, A1) => F[Z]): F[Z]
Implicitly added by genConcurrentForEitherT
Inherited from:
FlatMapArityFunctions
def flatMap2[A0, A1, Z](f0: F[A0], f1: F[A1])(f: (A0, A1) => F[Z]): F[Z]
Implicitly added by genConcurrentForKleisli
Inherited from:
FlatMapArityFunctions
def flatMap2[A0, A1, Z](f0: F[A0], f1: F[A1])(f: (A0, A1) => F[Z]): F[Z]
Implicitly added by genConcurrentForOptionT
Inherited from:
FlatMapArityFunctions
def flatMap2[A0, A1, Z](f0: F[A0], f1: F[A1])(f: (A0, A1) => F[Z]): F[Z]
Inherited from:
FlatMapArityFunctions
def flatMap20[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19) => F[Z]): F[Z]
Implicitly added by genConcurrentForEitherT
Inherited from:
FlatMapArityFunctions
def flatMap20[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19) => F[Z]): F[Z]
Implicitly added by genConcurrentForKleisli
Inherited from:
FlatMapArityFunctions
def flatMap20[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19) => F[Z]): F[Z]
Implicitly added by genConcurrentForOptionT
Inherited from:
FlatMapArityFunctions
def flatMap20[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19) => F[Z]): F[Z]
Inherited from:
FlatMapArityFunctions
def flatMap21[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19], f20: F[A20])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20) => F[Z]): F[Z]
Implicitly added by genConcurrentForEitherT
Inherited from:
FlatMapArityFunctions
def flatMap21[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19], f20: F[A20])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20) => F[Z]): F[Z]
Implicitly added by genConcurrentForKleisli
Inherited from:
FlatMapArityFunctions
def flatMap21[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19], f20: F[A20])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20) => F[Z]): F[Z]
Implicitly added by genConcurrentForOptionT
Inherited from:
FlatMapArityFunctions
def flatMap21[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19], f20: F[A20])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20) => F[Z]): F[Z]
Inherited from:
FlatMapArityFunctions
def flatMap22[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, A21, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19], f20: F[A20], f21: F[A21])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, A21) => F[Z]): F[Z]
Implicitly added by genConcurrentForEitherT
Inherited from:
FlatMapArityFunctions
def flatMap22[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, A21, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19], f20: F[A20], f21: F[A21])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, A21) => F[Z]): F[Z]
Implicitly added by genConcurrentForKleisli
Inherited from:
FlatMapArityFunctions
def flatMap22[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, A21, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19], f20: F[A20], f21: F[A21])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, A21) => F[Z]): F[Z]
Implicitly added by genConcurrentForOptionT
Inherited from:
FlatMapArityFunctions
def flatMap22[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, A21, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19], f20: F[A20], f21: F[A21])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, A21) => F[Z]): F[Z]
Inherited from:
FlatMapArityFunctions
def flatMap3[A0, A1, A2, Z](f0: F[A0], f1: F[A1], f2: F[A2])(f: (A0, A1, A2) => F[Z]): F[Z]
Implicitly added by genConcurrentForEitherT
Inherited from:
FlatMapArityFunctions
def flatMap3[A0, A1, A2, Z](f0: F[A0], f1: F[A1], f2: F[A2])(f: (A0, A1, A2) => F[Z]): F[Z]
Implicitly added by genConcurrentForKleisli
Inherited from:
FlatMapArityFunctions
def flatMap3[A0, A1, A2, Z](f0: F[A0], f1: F[A1], f2: F[A2])(f: (A0, A1, A2) => F[Z]): F[Z]
Implicitly added by genConcurrentForOptionT
Inherited from:
FlatMapArityFunctions
def flatMap3[A0, A1, A2, Z](f0: F[A0], f1: F[A1], f2: F[A2])(f: (A0, A1, A2) => F[Z]): F[Z]
Inherited from:
FlatMapArityFunctions
def flatMap4[A0, A1, A2, A3, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3])(f: (A0, A1, A2, A3) => F[Z]): F[Z]
Implicitly added by genConcurrentForEitherT
Inherited from:
FlatMapArityFunctions
def flatMap4[A0, A1, A2, A3, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3])(f: (A0, A1, A2, A3) => F[Z]): F[Z]
Implicitly added by genConcurrentForKleisli
Inherited from:
FlatMapArityFunctions
def flatMap4[A0, A1, A2, A3, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3])(f: (A0, A1, A2, A3) => F[Z]): F[Z]
Implicitly added by genConcurrentForOptionT
Inherited from:
FlatMapArityFunctions
def flatMap4[A0, A1, A2, A3, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3])(f: (A0, A1, A2, A3) => F[Z]): F[Z]
Inherited from:
FlatMapArityFunctions
def flatMap5[A0, A1, A2, A3, A4, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4])(f: (A0, A1, A2, A3, A4) => F[Z]): F[Z]
Implicitly added by genConcurrentForEitherT
Inherited from:
FlatMapArityFunctions
def flatMap5[A0, A1, A2, A3, A4, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4])(f: (A0, A1, A2, A3, A4) => F[Z]): F[Z]
Implicitly added by genConcurrentForKleisli
Inherited from:
FlatMapArityFunctions
def flatMap5[A0, A1, A2, A3, A4, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4])(f: (A0, A1, A2, A3, A4) => F[Z]): F[Z]
Implicitly added by genConcurrentForOptionT
Inherited from:
FlatMapArityFunctions
def flatMap5[A0, A1, A2, A3, A4, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4])(f: (A0, A1, A2, A3, A4) => F[Z]): F[Z]
Inherited from:
FlatMapArityFunctions
def flatMap6[A0, A1, A2, A3, A4, A5, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5])(f: (A0, A1, A2, A3, A4, A5) => F[Z]): F[Z]
Implicitly added by genConcurrentForEitherT
Inherited from:
FlatMapArityFunctions
def flatMap6[A0, A1, A2, A3, A4, A5, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5])(f: (A0, A1, A2, A3, A4, A5) => F[Z]): F[Z]
Implicitly added by genConcurrentForKleisli
Inherited from:
FlatMapArityFunctions
def flatMap6[A0, A1, A2, A3, A4, A5, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5])(f: (A0, A1, A2, A3, A4, A5) => F[Z]): F[Z]
Implicitly added by genConcurrentForOptionT
Inherited from:
FlatMapArityFunctions
def flatMap6[A0, A1, A2, A3, A4, A5, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5])(f: (A0, A1, A2, A3, A4, A5) => F[Z]): F[Z]
Inherited from:
FlatMapArityFunctions
def flatMap7[A0, A1, A2, A3, A4, A5, A6, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6])(f: (A0, A1, A2, A3, A4, A5, A6) => F[Z]): F[Z]
Implicitly added by genConcurrentForEitherT
Inherited from:
FlatMapArityFunctions
def flatMap7[A0, A1, A2, A3, A4, A5, A6, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6])(f: (A0, A1, A2, A3, A4, A5, A6) => F[Z]): F[Z]
Implicitly added by genConcurrentForKleisli
Inherited from:
FlatMapArityFunctions
def flatMap7[A0, A1, A2, A3, A4, A5, A6, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6])(f: (A0, A1, A2, A3, A4, A5, A6) => F[Z]): F[Z]
Implicitly added by genConcurrentForOptionT
Inherited from:
FlatMapArityFunctions
def flatMap7[A0, A1, A2, A3, A4, A5, A6, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6])(f: (A0, A1, A2, A3, A4, A5, A6) => F[Z]): F[Z]
Inherited from:
FlatMapArityFunctions
def flatMap8[A0, A1, A2, A3, A4, A5, A6, A7, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7])(f: (A0, A1, A2, A3, A4, A5, A6, A7) => F[Z]): F[Z]
Implicitly added by genConcurrentForEitherT
Inherited from:
FlatMapArityFunctions
def flatMap8[A0, A1, A2, A3, A4, A5, A6, A7, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7])(f: (A0, A1, A2, A3, A4, A5, A6, A7) => F[Z]): F[Z]
Implicitly added by genConcurrentForKleisli
Inherited from:
FlatMapArityFunctions
def flatMap8[A0, A1, A2, A3, A4, A5, A6, A7, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7])(f: (A0, A1, A2, A3, A4, A5, A6, A7) => F[Z]): F[Z]
Implicitly added by genConcurrentForOptionT
Inherited from:
FlatMapArityFunctions
def flatMap8[A0, A1, A2, A3, A4, A5, A6, A7, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7])(f: (A0, A1, A2, A3, A4, A5, A6, A7) => F[Z]): F[Z]
Inherited from:
FlatMapArityFunctions
def flatMap9[A0, A1, A2, A3, A4, A5, A6, A7, A8, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8) => F[Z]): F[Z]
Implicitly added by genConcurrentForEitherT
Inherited from:
FlatMapArityFunctions
def flatMap9[A0, A1, A2, A3, A4, A5, A6, A7, A8, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8) => F[Z]): F[Z]
Implicitly added by genConcurrentForKleisli
Inherited from:
FlatMapArityFunctions
def flatMap9[A0, A1, A2, A3, A4, A5, A6, A7, A8, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8) => F[Z]): F[Z]
Implicitly added by genConcurrentForOptionT
Inherited from:
FlatMapArityFunctions
def flatMap9[A0, A1, A2, A3, A4, A5, A6, A7, A8, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8) => F[Z]): F[Z]
Inherited from:
FlatMapArityFunctions
def flatTap[A, B](fa: F[A])(f: A => F[B]): F[A]
Implicitly added by genConcurrentForEitherT

Apply a monadic function and discard the result while keeping the effect.

Apply a monadic function and discard the result while keeping the effect.

scala> import cats._, implicits._
scala> Option(1).flatTap(_ => None)
res0: Option[Int] = None
scala> Option(1).flatTap(_ => Some("123"))
res1: Option[Int] = Some(1)
scala> def nCats(n: Int) = List.fill(n)("cat")
nCats: (n: Int)List[String]
scala> List[Int](0).flatTap(nCats)
res2: List[Int] = List()
scala> List[Int](4).flatTap(nCats)
res3: List[Int] = List(4, 4, 4, 4)
Inherited from:
FlatMap
def flatTap[A, B](fa: F[A])(f: A => F[B]): F[A]
Implicitly added by genConcurrentForKleisli

Apply a monadic function and discard the result while keeping the effect.

Apply a monadic function and discard the result while keeping the effect.

scala> import cats._, implicits._
scala> Option(1).flatTap(_ => None)
res0: Option[Int] = None
scala> Option(1).flatTap(_ => Some("123"))
res1: Option[Int] = Some(1)
scala> def nCats(n: Int) = List.fill(n)("cat")
nCats: (n: Int)List[String]
scala> List[Int](0).flatTap(nCats)
res2: List[Int] = List()
scala> List[Int](4).flatTap(nCats)
res3: List[Int] = List(4, 4, 4, 4)
Inherited from:
FlatMap
def flatTap[A, B](fa: F[A])(f: A => F[B]): F[A]
Implicitly added by genConcurrentForOptionT

Apply a monadic function and discard the result while keeping the effect.

Apply a monadic function and discard the result while keeping the effect.

scala> import cats._, implicits._
scala> Option(1).flatTap(_ => None)
res0: Option[Int] = None
scala> Option(1).flatTap(_ => Some("123"))
res1: Option[Int] = Some(1)
scala> def nCats(n: Int) = List.fill(n)("cat")
nCats: (n: Int)List[String]
scala> List[Int](0).flatTap(nCats)
res2: List[Int] = List()
scala> List[Int](4).flatTap(nCats)
res3: List[Int] = List(4, 4, 4, 4)
Inherited from:
FlatMap
def flatTap[A, B](fa: F[A])(f: A => F[B]): F[A]

Apply a monadic function and discard the result while keeping the effect.

Apply a monadic function and discard the result while keeping the effect.

scala> import cats._, implicits._
scala> Option(1).flatTap(_ => None)
res0: Option[Int] = None
scala> Option(1).flatTap(_ => Some("123"))
res1: Option[Int] = Some(1)
scala> def nCats(n: Int) = List.fill(n)("cat")
nCats: (n: Int)List[String]
scala> List[Int](0).flatTap(nCats)
res2: List[Int] = List()
scala> List[Int](4).flatTap(nCats)
res3: List[Int] = List(4, 4, 4, 4)
Inherited from:
FlatMap
def flatten[A](ffa: F[F[A]]): F[A]
Implicitly added by genConcurrentForEitherT

"flatten" a nested F of F structure into a single-layer F structure.

"flatten" a nested F of F structure into a single-layer F structure.

This is also commonly called join.

Example:

scala> import cats.Eval
scala> import cats.implicits._

scala> val nested: Eval[Eval[Int]] = Eval.now(Eval.now(3))
scala> val flattened: Eval[Int] = nested.flatten
scala> flattened.value
res0: Int = 3
Inherited from:
FlatMap
def flatten[A](ffa: F[F[A]]): F[A]
Implicitly added by genConcurrentForKleisli

"flatten" a nested F of F structure into a single-layer F structure.

"flatten" a nested F of F structure into a single-layer F structure.

This is also commonly called join.

Example:

scala> import cats.Eval
scala> import cats.implicits._

scala> val nested: Eval[Eval[Int]] = Eval.now(Eval.now(3))
scala> val flattened: Eval[Int] = nested.flatten
scala> flattened.value
res0: Int = 3
Inherited from:
FlatMap
def flatten[A](ffa: F[F[A]]): F[A]
Implicitly added by genConcurrentForOptionT

"flatten" a nested F of F structure into a single-layer F structure.

"flatten" a nested F of F structure into a single-layer F structure.

This is also commonly called join.

Example:

scala> import cats.Eval
scala> import cats.implicits._

scala> val nested: Eval[Eval[Int]] = Eval.now(Eval.now(3))
scala> val flattened: Eval[Int] = nested.flatten
scala> flattened.value
res0: Int = 3
Inherited from:
FlatMap
def flatten[A](ffa: F[F[A]]): F[A]

"flatten" a nested F of F structure into a single-layer F structure.

"flatten" a nested F of F structure into a single-layer F structure.

This is also commonly called join.

Example:

scala> import cats.Eval
scala> import cats.implicits._

scala> val nested: Eval[Eval[Int]] = Eval.now(Eval.now(3))
scala> val flattened: Eval[Int] = nested.flatten
scala> flattened.value
res0: Int = 3
Inherited from:
FlatMap
final def fmap[A, B](fa: F[A])(f: A => B): F[B]
Implicitly added by genConcurrentForEitherT

Alias for map, since map can't be injected as syntax if the implementing type already had a built-in .map method.

Alias for map, since map can't be injected as syntax if the implementing type already had a built-in .map method.

Example:

scala> import cats.implicits._

scala> val m: Map[Int, String] = Map(1 -> "hi", 2 -> "there", 3 -> "you")

scala> m.fmap(_ ++ "!")
res0: Map[Int,String] = Map(1 -> hi!, 2 -> there!, 3 -> you!)
Inherited from:
Functor
final def fmap[A, B](fa: F[A])(f: A => B): F[B]
Implicitly added by genConcurrentForKleisli

Alias for map, since map can't be injected as syntax if the implementing type already had a built-in .map method.

Alias for map, since map can't be injected as syntax if the implementing type already had a built-in .map method.

Example:

scala> import cats.implicits._

scala> val m: Map[Int, String] = Map(1 -> "hi", 2 -> "there", 3 -> "you")

scala> m.fmap(_ ++ "!")
res0: Map[Int,String] = Map(1 -> hi!, 2 -> there!, 3 -> you!)
Inherited from:
Functor
final def fmap[A, B](fa: F[A])(f: A => B): F[B]
Implicitly added by genConcurrentForOptionT

Alias for map, since map can't be injected as syntax if the implementing type already had a built-in .map method.

Alias for map, since map can't be injected as syntax if the implementing type already had a built-in .map method.

Example:

scala> import cats.implicits._

scala> val m: Map[Int, String] = Map(1 -> "hi", 2 -> "there", 3 -> "you")

scala> m.fmap(_ ++ "!")
res0: Map[Int,String] = Map(1 -> hi!, 2 -> there!, 3 -> you!)
Inherited from:
Functor
final def fmap[A, B](fa: F[A])(f: A => B): F[B]

Alias for map, since map can't be injected as syntax if the implementing type already had a built-in .map method.

Alias for map, since map can't be injected as syntax if the implementing type already had a built-in .map method.

Example:

scala> import cats.implicits._

scala> val m: Map[Int, String] = Map(1 -> "hi", 2 -> "there", 3 -> "you")

scala> m.fmap(_ ++ "!")
res0: Map[Int,String] = Map(1 -> hi!, 2 -> there!, 3 -> you!)
Inherited from:
Functor
def forceR[A, B](fa: F[A])(fb: F[B]): F[B]
Implicitly added by genConcurrentForEitherT

Analogous to productR, but suppresses short-circuiting behavior except for cancelation.

Analogous to productR, but suppresses short-circuiting behavior except for cancelation.

Inherited from:
MonadCancel
def forceR[A, B](fa: F[A])(fb: F[B]): F[B]
Implicitly added by genConcurrentForKleisli

Analogous to productR, but suppresses short-circuiting behavior except for cancelation.

Analogous to productR, but suppresses short-circuiting behavior except for cancelation.

Inherited from:
MonadCancel
def forceR[A, B](fa: F[A])(fb: F[B]): F[B]
Implicitly added by genConcurrentForOptionT

Analogous to productR, but suppresses short-circuiting behavior except for cancelation.

Analogous to productR, but suppresses short-circuiting behavior except for cancelation.

Inherited from:
MonadCancel
def forceR[A, B](fa: F[A])(fb: F[B]): F[B]

Analogous to productR, but suppresses short-circuiting behavior except for cancelation.

Analogous to productR, but suppresses short-circuiting behavior except for cancelation.

Inherited from:
MonadCancel
def foreverM[A, B](fa: F[A]): F[B]
Implicitly added by genConcurrentForEitherT

Like an infinite loop of >> calls. This is most useful effect loops that you want to run forever in for instance a server.

Like an infinite loop of >> calls. This is most useful effect loops that you want to run forever in for instance a server.

This will be an infinite loop, or it will return an F[Nothing].

Be careful using this. For instance, a List of length k will produce a list of length k^n at iteration n. This means if k = 0, we return an empty list, if k = 1, we loop forever allocating single element lists, but if we have a k > 1, we will allocate exponentially increasing memory and very quickly OOM.

Inherited from:
FlatMap
def foreverM[A, B](fa: F[A]): F[B]
Implicitly added by genConcurrentForKleisli

Like an infinite loop of >> calls. This is most useful effect loops that you want to run forever in for instance a server.

Like an infinite loop of >> calls. This is most useful effect loops that you want to run forever in for instance a server.

This will be an infinite loop, or it will return an F[Nothing].

Be careful using this. For instance, a List of length k will produce a list of length k^n at iteration n. This means if k = 0, we return an empty list, if k = 1, we loop forever allocating single element lists, but if we have a k > 1, we will allocate exponentially increasing memory and very quickly OOM.

Inherited from:
FlatMap
def foreverM[A, B](fa: F[A]): F[B]
Implicitly added by genConcurrentForOptionT

Like an infinite loop of >> calls. This is most useful effect loops that you want to run forever in for instance a server.

Like an infinite loop of >> calls. This is most useful effect loops that you want to run forever in for instance a server.

This will be an infinite loop, or it will return an F[Nothing].

Be careful using this. For instance, a List of length k will produce a list of length k^n at iteration n. This means if k = 0, we return an empty list, if k = 1, we loop forever allocating single element lists, but if we have a k > 1, we will allocate exponentially increasing memory and very quickly OOM.

Inherited from:
FlatMap
def foreverM[A, B](fa: F[A]): F[B]

Like an infinite loop of >> calls. This is most useful effect loops that you want to run forever in for instance a server.

Like an infinite loop of >> calls. This is most useful effect loops that you want to run forever in for instance a server.

This will be an infinite loop, or it will return an F[Nothing].

Be careful using this. For instance, a List of length k will produce a list of length k^n at iteration n. This means if k = 0, we return an empty list, if k = 1, we loop forever allocating single element lists, but if we have a k > 1, we will allocate exponentially increasing memory and very quickly OOM.

Inherited from:
FlatMap
def fproduct[A, B](fa: F[A])(f: A => B): F[(A, B)]
Implicitly added by genConcurrentForEitherT

Tuple the values in fa with the result of applying a function with the value

Tuple the values in fa with the result of applying a function with the value

Example:

scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForOption

scala> Functor[Option].fproduct(Option(42))(_.toString)
res0: Option[(Int, String)] = Some((42,42))
Inherited from:
Functor
def fproduct[A, B](fa: F[A])(f: A => B): F[(A, B)]
Implicitly added by genConcurrentForKleisli

Tuple the values in fa with the result of applying a function with the value

Tuple the values in fa with the result of applying a function with the value

Example:

scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForOption

scala> Functor[Option].fproduct(Option(42))(_.toString)
res0: Option[(Int, String)] = Some((42,42))
Inherited from:
Functor
def fproduct[A, B](fa: F[A])(f: A => B): F[(A, B)]
Implicitly added by genConcurrentForOptionT

Tuple the values in fa with the result of applying a function with the value

Tuple the values in fa with the result of applying a function with the value

Example:

scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForOption

scala> Functor[Option].fproduct(Option(42))(_.toString)
res0: Option[(Int, String)] = Some((42,42))
Inherited from:
Functor
def fproduct[A, B](fa: F[A])(f: A => B): F[(A, B)]

Tuple the values in fa with the result of applying a function with the value

Tuple the values in fa with the result of applying a function with the value

Example:

scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForOption

scala> Functor[Option].fproduct(Option(42))(_.toString)
res0: Option[(Int, String)] = Some((42,42))
Inherited from:
Functor
def fproductLeft[A, B](fa: F[A])(f: A => B): F[(B, A)]
Implicitly added by genConcurrentForEitherT

Pair the result of function application with A.

Pair the result of function application with A.

Example:

scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForOption

scala> Functor[Option].fproductLeft(Option(42))(_.toString)
res0: Option[(String, Int)] = Some((42,42))
Inherited from:
Functor
def fproductLeft[A, B](fa: F[A])(f: A => B): F[(B, A)]
Implicitly added by genConcurrentForKleisli

Pair the result of function application with A.

Pair the result of function application with A.

Example:

scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForOption

scala> Functor[Option].fproductLeft(Option(42))(_.toString)
res0: Option[(String, Int)] = Some((42,42))
Inherited from:
Functor
def fproductLeft[A, B](fa: F[A])(f: A => B): F[(B, A)]
Implicitly added by genConcurrentForOptionT

Pair the result of function application with A.

Pair the result of function application with A.

Example:

scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForOption

scala> Functor[Option].fproductLeft(Option(42))(_.toString)
res0: Option[(String, Int)] = Some((42,42))
Inherited from:
Functor
def fproductLeft[A, B](fa: F[A])(f: A => B): F[(B, A)]

Pair the result of function application with A.

Pair the result of function application with A.

Example:

scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForOption

scala> Functor[Option].fproductLeft(Option(42))(_.toString)
res0: Option[(String, Int)] = Some((42,42))
Inherited from:
Functor
def fromEither[A](x: Either[E, A]): F[A]
Implicitly added by genConcurrentForEitherT

Convert from scala.Either

Convert from scala.Either

Example:

scala> import cats.ApplicativeError
scala> import cats.instances.option._

scala> ApplicativeError[Option, Unit].fromEither(Right(1))
res0: scala.Option[Int] = Some(1)

scala> ApplicativeError[Option, Unit].fromEither(Left(()))
res1: scala.Option[Nothing] = None
Inherited from:
ApplicativeError
def fromEither[A](x: Either[E, A]): F[A]
Implicitly added by genConcurrentForKleisli

Convert from scala.Either

Convert from scala.Either

Example:

scala> import cats.ApplicativeError
scala> import cats.instances.option._

scala> ApplicativeError[Option, Unit].fromEither(Right(1))
res0: scala.Option[Int] = Some(1)

scala> ApplicativeError[Option, Unit].fromEither(Left(()))
res1: scala.Option[Nothing] = None
Inherited from:
ApplicativeError
def fromEither[A](x: Either[E, A]): F[A]
Implicitly added by genConcurrentForOptionT

Convert from scala.Either

Convert from scala.Either

Example:

scala> import cats.ApplicativeError
scala> import cats.instances.option._

scala> ApplicativeError[Option, Unit].fromEither(Right(1))
res0: scala.Option[Int] = Some(1)

scala> ApplicativeError[Option, Unit].fromEither(Left(()))
res1: scala.Option[Nothing] = None
Inherited from:
ApplicativeError
def fromEither[A](x: Either[E, A]): F[A]

Convert from scala.Either

Convert from scala.Either

Example:

scala> import cats.ApplicativeError
scala> import cats.instances.option._

scala> ApplicativeError[Option, Unit].fromEither(Right(1))
res0: scala.Option[Int] = Some(1)

scala> ApplicativeError[Option, Unit].fromEither(Left(()))
res1: scala.Option[Nothing] = None
Inherited from:
ApplicativeError
def fromOption[A](oa: Option[A], ifEmpty: => E): F[A]
Implicitly added by genConcurrentForEitherT

Convert from scala.Option

Convert from scala.Option

Example:

scala> import cats.implicits._
scala> import cats.ApplicativeError
scala> val F = ApplicativeError[Either[String, *], String]

scala> F.fromOption(Some(1), "Empty")
res0: scala.Either[String, Int] = Right(1)

scala> F.fromOption(Option.empty[Int], "Empty")
res1: scala.Either[String, Int] = Left(Empty)
Inherited from:
ApplicativeError
def fromOption[A](oa: Option[A], ifEmpty: => E): F[A]
Implicitly added by genConcurrentForKleisli

Convert from scala.Option

Convert from scala.Option

Example:

scala> import cats.implicits._
scala> import cats.ApplicativeError
scala> val F = ApplicativeError[Either[String, *], String]

scala> F.fromOption(Some(1), "Empty")
res0: scala.Either[String, Int] = Right(1)

scala> F.fromOption(Option.empty[Int], "Empty")
res1: scala.Either[String, Int] = Left(Empty)
Inherited from:
ApplicativeError
def fromOption[A](oa: Option[A], ifEmpty: => E): F[A]
Implicitly added by genConcurrentForOptionT

Convert from scala.Option

Convert from scala.Option

Example:

scala> import cats.implicits._
scala> import cats.ApplicativeError
scala> val F = ApplicativeError[Either[String, *], String]

scala> F.fromOption(Some(1), "Empty")
res0: scala.Either[String, Int] = Right(1)

scala> F.fromOption(Option.empty[Int], "Empty")
res1: scala.Either[String, Int] = Left(Empty)
Inherited from:
ApplicativeError
def fromOption[A](oa: Option[A], ifEmpty: => E): F[A]

Convert from scala.Option

Convert from scala.Option

Example:

scala> import cats.implicits._
scala> import cats.ApplicativeError
scala> val F = ApplicativeError[Either[String, *], String]

scala> F.fromOption(Some(1), "Empty")
res0: scala.Either[String, Int] = Right(1)

scala> F.fromOption(Option.empty[Int], "Empty")
res1: scala.Either[String, Int] = Left(Empty)
Inherited from:
ApplicativeError
def fromTry[A](t: Try[A])(implicit ev: Throwable <:< E): F[A]
Implicitly added by genConcurrentForEitherT

If the error type is Throwable, we can convert from a scala.util.Try

If the error type is Throwable, we can convert from a scala.util.Try

Inherited from:
ApplicativeError
def fromTry[A](t: Try[A])(implicit ev: Throwable <:< E): F[A]
Implicitly added by genConcurrentForKleisli

If the error type is Throwable, we can convert from a scala.util.Try

If the error type is Throwable, we can convert from a scala.util.Try

Inherited from:
ApplicativeError
def fromTry[A](t: Try[A])(implicit ev: Throwable <:< E): F[A]
Implicitly added by genConcurrentForOptionT

If the error type is Throwable, we can convert from a scala.util.Try

If the error type is Throwable, we can convert from a scala.util.Try

Inherited from:
ApplicativeError
def fromTry[A](t: Try[A])(implicit ev: Throwable <:< E): F[A]

If the error type is Throwable, we can convert from a scala.util.Try

If the error type is Throwable, we can convert from a scala.util.Try

Inherited from:
ApplicativeError
def fromValidated[A](x: Validated[E, A]): F[A]
Implicitly added by genConcurrentForEitherT

Convert from cats.data.Validated

Convert from cats.data.Validated

Example:

scala> import cats.implicits._
scala> import cats.ApplicativeError

scala> ApplicativeError[Option, Unit].fromValidated(1.valid[Unit])
res0: scala.Option[Int] = Some(1)

scala> ApplicativeError[Option, Unit].fromValidated(().invalid[Int])
res1: scala.Option[Int] = None
Inherited from:
ApplicativeError
def fromValidated[A](x: Validated[E, A]): F[A]
Implicitly added by genConcurrentForKleisli

Convert from cats.data.Validated

Convert from cats.data.Validated

Example:

scala> import cats.implicits._
scala> import cats.ApplicativeError

scala> ApplicativeError[Option, Unit].fromValidated(1.valid[Unit])
res0: scala.Option[Int] = Some(1)

scala> ApplicativeError[Option, Unit].fromValidated(().invalid[Int])
res1: scala.Option[Int] = None
Inherited from:
ApplicativeError
def fromValidated[A](x: Validated[E, A]): F[A]
Implicitly added by genConcurrentForOptionT

Convert from cats.data.Validated

Convert from cats.data.Validated

Example:

scala> import cats.implicits._
scala> import cats.ApplicativeError

scala> ApplicativeError[Option, Unit].fromValidated(1.valid[Unit])
res0: scala.Option[Int] = Some(1)

scala> ApplicativeError[Option, Unit].fromValidated(().invalid[Int])
res1: scala.Option[Int] = None
Inherited from:
ApplicativeError
def fromValidated[A](x: Validated[E, A]): F[A]

Convert from cats.data.Validated

Convert from cats.data.Validated

Example:

scala> import cats.implicits._
scala> import cats.ApplicativeError

scala> ApplicativeError[Option, Unit].fromValidated(1.valid[Unit])
res0: scala.Option[Int] = Some(1)

scala> ApplicativeError[Option, Unit].fromValidated(().invalid[Int])
res1: scala.Option[Int] = None
Inherited from:
ApplicativeError
def guarantee[A](fa: F[A], fin: F[Unit]): F[A]
Implicitly added by genConcurrentForEitherT

Specifies an effect that is always invoked after evaluation of fa completes, regardless of the outcome.

Specifies an effect that is always invoked after evaluation of fa completes, regardless of the outcome.

This function can be thought of as a combination of flatTap, onError, and onCancel.

Value parameters:
fa

The effect that is run after fin is registered.

fin

The effect to run in the event of a cancelation or error.

See also:

guaranteeCase for a more powerful variant

Outcome for the various outcomes of evaluation

Inherited from:
MonadCancel
def guarantee[A](fa: F[A], fin: F[Unit]): F[A]
Implicitly added by genConcurrentForKleisli

Specifies an effect that is always invoked after evaluation of fa completes, regardless of the outcome.

Specifies an effect that is always invoked after evaluation of fa completes, regardless of the outcome.

This function can be thought of as a combination of flatTap, onError, and onCancel.

Value parameters:
fa

The effect that is run after fin is registered.

fin

The effect to run in the event of a cancelation or error.

See also:

guaranteeCase for a more powerful variant

Outcome for the various outcomes of evaluation

Inherited from:
MonadCancel
def guarantee[A](fa: F[A], fin: F[Unit]): F[A]
Implicitly added by genConcurrentForOptionT

Specifies an effect that is always invoked after evaluation of fa completes, regardless of the outcome.

Specifies an effect that is always invoked after evaluation of fa completes, regardless of the outcome.

This function can be thought of as a combination of flatTap, onError, and onCancel.

Value parameters:
fa

The effect that is run after fin is registered.

fin

The effect to run in the event of a cancelation or error.

See also:

guaranteeCase for a more powerful variant

Outcome for the various outcomes of evaluation

Inherited from:
MonadCancel
def guarantee[A](fa: F[A], fin: F[Unit]): F[A]

Specifies an effect that is always invoked after evaluation of fa completes, regardless of the outcome.

Specifies an effect that is always invoked after evaluation of fa completes, regardless of the outcome.

This function can be thought of as a combination of flatTap, onError, and onCancel.

Value parameters:
fa

The effect that is run after fin is registered.

fin

The effect to run in the event of a cancelation or error.

See also:

guaranteeCase for a more powerful variant

Outcome for the various outcomes of evaluation

Inherited from:
MonadCancel
def guaranteeCase[A](fa: F[A])(fin: Outcome[F, E, A] => F[Unit]): F[A]
Implicitly added by genConcurrentForEitherT

Specifies an effect that is always invoked after evaluation of fa completes, but depends on the outcome.

Specifies an effect that is always invoked after evaluation of fa completes, but depends on the outcome.

This function can be thought of as a combination of flatTap, onError, and onCancel.

Value parameters:
fa

The effect that is run after fin is registered.

fin

A function that returns the effect to run based on the outcome.

See also:

bracketCase for a more powerful variant

Outcome for the various outcomes of evaluation

Inherited from:
MonadCancel
def guaranteeCase[A](fa: F[A])(fin: Outcome[F, E, A] => F[Unit]): F[A]
Implicitly added by genConcurrentForKleisli

Specifies an effect that is always invoked after evaluation of fa completes, but depends on the outcome.

Specifies an effect that is always invoked after evaluation of fa completes, but depends on the outcome.

This function can be thought of as a combination of flatTap, onError, and onCancel.

Value parameters:
fa

The effect that is run after fin is registered.

fin

A function that returns the effect to run based on the outcome.

See also:

bracketCase for a more powerful variant

Outcome for the various outcomes of evaluation

Inherited from:
MonadCancel
def guaranteeCase[A](fa: F[A])(fin: Outcome[F, E, A] => F[Unit]): F[A]
Implicitly added by genConcurrentForOptionT

Specifies an effect that is always invoked after evaluation of fa completes, but depends on the outcome.

Specifies an effect that is always invoked after evaluation of fa completes, but depends on the outcome.

This function can be thought of as a combination of flatTap, onError, and onCancel.

Value parameters:
fa

The effect that is run after fin is registered.

fin

A function that returns the effect to run based on the outcome.

See also:

bracketCase for a more powerful variant

Outcome for the various outcomes of evaluation

Inherited from:
MonadCancel
def guaranteeCase[A](fa: F[A])(fin: Outcome[F, E, A] => F[Unit]): F[A]

Specifies an effect that is always invoked after evaluation of fa completes, but depends on the outcome.

Specifies an effect that is always invoked after evaluation of fa completes, but depends on the outcome.

This function can be thought of as a combination of flatTap, onError, and onCancel.

Value parameters:
fa

The effect that is run after fin is registered.

fin

A function that returns the effect to run based on the outcome.

See also:

bracketCase for a more powerful variant

Outcome for the various outcomes of evaluation

Inherited from:
MonadCancel
def handleError[A](fa: F[A])(f: E => A): F[A]
Implicitly added by genConcurrentForEitherT

Handle any error, by mapping it to an A value.

Handle any error, by mapping it to an A value.

See also:

handleErrorWith to map to an F[A] value instead of simply an A value.

recover to only recover from certain errors.

Inherited from:
ApplicativeError
def handleError[A](fa: F[A])(f: E => A): F[A]
Implicitly added by genConcurrentForKleisli

Handle any error, by mapping it to an A value.

Handle any error, by mapping it to an A value.

See also:

handleErrorWith to map to an F[A] value instead of simply an A value.

recover to only recover from certain errors.

Inherited from:
ApplicativeError
def handleError[A](fa: F[A])(f: E => A): F[A]
Implicitly added by genConcurrentForOptionT

Handle any error, by mapping it to an A value.

Handle any error, by mapping it to an A value.

See also:

handleErrorWith to map to an F[A] value instead of simply an A value.

recover to only recover from certain errors.

Inherited from:
ApplicativeError
def handleError[A](fa: F[A])(f: E => A): F[A]

Handle any error, by mapping it to an A value.

Handle any error, by mapping it to an A value.

See also:

handleErrorWith to map to an F[A] value instead of simply an A value.

recover to only recover from certain errors.

Inherited from:
ApplicativeError
def handleErrorWith[A](fa: F[A])(f: E => F[A]): F[A]
Implicitly added by genConcurrentForEitherT

Handle any error, potentially recovering from it, by mapping it to an F[A] value.

Handle any error, potentially recovering from it, by mapping it to an F[A] value.

See also:

handleError to handle any error by simply mapping it to an A value instead of an F[A].

recoverWith to recover from only certain errors.

Inherited from:
ApplicativeError
def handleErrorWith[A](fa: F[A])(f: E => F[A]): F[A]
Implicitly added by genConcurrentForKleisli

Handle any error, potentially recovering from it, by mapping it to an F[A] value.

Handle any error, potentially recovering from it, by mapping it to an F[A] value.

See also:

handleError to handle any error by simply mapping it to an A value instead of an F[A].

recoverWith to recover from only certain errors.

Inherited from:
ApplicativeError
def handleErrorWith[A](fa: F[A])(f: E => F[A]): F[A]
Implicitly added by genConcurrentForOptionT

Handle any error, potentially recovering from it, by mapping it to an F[A] value.

Handle any error, potentially recovering from it, by mapping it to an F[A] value.

See also:

handleError to handle any error by simply mapping it to an A value instead of an F[A].

recoverWith to recover from only certain errors.

Inherited from:
ApplicativeError
def handleErrorWith[A](fa: F[A])(f: E => F[A]): F[A]

Handle any error, potentially recovering from it, by mapping it to an F[A] value.

Handle any error, potentially recovering from it, by mapping it to an F[A] value.

See also:

handleError to handle any error by simply mapping it to an A value instead of an F[A].

recoverWith to recover from only certain errors.

Inherited from:
ApplicativeError
def ifElseM[A](branches: (F[Boolean], F[A])*)(els: F[A]): F[A]
Implicitly added by genConcurrentForEitherT

Simulates an if/else-if/else in the context of an F. It evaluates conditions until one evaluates to true, and returns the associated F[A]. If no condition is true, returns els.

Simulates an if/else-if/else in the context of an F. It evaluates conditions until one evaluates to true, and returns the associated F[A]. If no condition is true, returns els.

scala> import cats._
scala> Monad[Eval].ifElseM(Eval.later(false) -> Eval.later(1), Eval.later(true) -> Eval.later(2))(Eval.later(5)).value
res0: Int = 2

Based on a gist by Daniel Spiewak with a stack-safe implementation due to P. Oscar Boykin

See also:
Inherited from:
Monad
def ifElseM[A](branches: (F[Boolean], F[A])*)(els: F[A]): F[A]
Implicitly added by genConcurrentForKleisli

Simulates an if/else-if/else in the context of an F. It evaluates conditions until one evaluates to true, and returns the associated F[A]. If no condition is true, returns els.

Simulates an if/else-if/else in the context of an F. It evaluates conditions until one evaluates to true, and returns the associated F[A]. If no condition is true, returns els.

scala> import cats._
scala> Monad[Eval].ifElseM(Eval.later(false) -> Eval.later(1), Eval.later(true) -> Eval.later(2))(Eval.later(5)).value
res0: Int = 2

Based on a gist by Daniel Spiewak with a stack-safe implementation due to P. Oscar Boykin

See also:
Inherited from:
Monad
def ifElseM[A](branches: (F[Boolean], F[A])*)(els: F[A]): F[A]
Implicitly added by genConcurrentForOptionT

Simulates an if/else-if/else in the context of an F. It evaluates conditions until one evaluates to true, and returns the associated F[A]. If no condition is true, returns els.

Simulates an if/else-if/else in the context of an F. It evaluates conditions until one evaluates to true, and returns the associated F[A]. If no condition is true, returns els.

scala> import cats._
scala> Monad[Eval].ifElseM(Eval.later(false) -> Eval.later(1), Eval.later(true) -> Eval.later(2))(Eval.later(5)).value
res0: Int = 2

Based on a gist by Daniel Spiewak with a stack-safe implementation due to P. Oscar Boykin

See also:
Inherited from:
Monad
def ifElseM[A](branches: (F[Boolean], F[A])*)(els: F[A]): F[A]

Simulates an if/else-if/else in the context of an F. It evaluates conditions until one evaluates to true, and returns the associated F[A]. If no condition is true, returns els.

Simulates an if/else-if/else in the context of an F. It evaluates conditions until one evaluates to true, and returns the associated F[A]. If no condition is true, returns els.

scala> import cats._
scala> Monad[Eval].ifElseM(Eval.later(false) -> Eval.later(1), Eval.later(true) -> Eval.later(2))(Eval.later(5)).value
res0: Int = 2

Based on a gist by Daniel Spiewak with a stack-safe implementation due to P. Oscar Boykin

See also:
Inherited from:
Monad
def ifF[A](fb: F[Boolean])(ifTrue: => A, ifFalse: => A): F[A]
Implicitly added by genConcurrentForEitherT

Lifts if to Functor

Lifts if to Functor

Example:

scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForList

scala> Functor[List].ifF(List(true, false, false))(1, 0)
res0: List[Int] = List(1, 0, 0)
Inherited from:
Functor
def ifF[A](fb: F[Boolean])(ifTrue: => A, ifFalse: => A): F[A]
Implicitly added by genConcurrentForKleisli

Lifts if to Functor

Lifts if to Functor

Example:

scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForList

scala> Functor[List].ifF(List(true, false, false))(1, 0)
res0: List[Int] = List(1, 0, 0)
Inherited from:
Functor
def ifF[A](fb: F[Boolean])(ifTrue: => A, ifFalse: => A): F[A]
Implicitly added by genConcurrentForOptionT

Lifts if to Functor

Lifts if to Functor

Example:

scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForList

scala> Functor[List].ifF(List(true, false, false))(1, 0)
res0: List[Int] = List(1, 0, 0)
Inherited from:
Functor
def ifF[A](fb: F[Boolean])(ifTrue: => A, ifFalse: => A): F[A]

Lifts if to Functor

Lifts if to Functor

Example:

scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForList

scala> Functor[List].ifF(List(true, false, false))(1, 0)
res0: List[Int] = List(1, 0, 0)
Inherited from:
Functor
def ifM[B](fa: F[Boolean])(ifTrue: => F[B], ifFalse: => F[B]): F[B]
Implicitly added by genConcurrentForEitherT

if lifted into monad.

if lifted into monad.

Inherited from:
FlatMap
def ifM[B](fa: F[Boolean])(ifTrue: => F[B], ifFalse: => F[B]): F[B]
Implicitly added by genConcurrentForKleisli

if lifted into monad.

if lifted into monad.

Inherited from:
FlatMap
def ifM[B](fa: F[Boolean])(ifTrue: => F[B], ifFalse: => F[B]): F[B]
Implicitly added by genConcurrentForOptionT

if lifted into monad.

if lifted into monad.

Inherited from:
FlatMap
def ifM[B](fa: F[Boolean])(ifTrue: => F[B], ifFalse: => F[B]): F[B]

if lifted into monad.

if lifted into monad.

Inherited from:
FlatMap
override def imap[A, B](fa: F[A])(f: A => B)(g: B => A): F[B]
Definition Classes
Inherited from:
Functor
def iterateForeverM[A, B](a: A)(f: A => F[A]): F[B]
Implicitly added by genConcurrentForEitherT

iterateForeverM is almost exclusively useful for effect types. For instance, A may be some state, we may take the current state, run some effect to get a new state and repeat.

iterateForeverM is almost exclusively useful for effect types. For instance, A may be some state, we may take the current state, run some effect to get a new state and repeat.

Inherited from:
FlatMap
def iterateForeverM[A, B](a: A)(f: A => F[A]): F[B]
Implicitly added by genConcurrentForKleisli

iterateForeverM is almost exclusively useful for effect types. For instance, A may be some state, we may take the current state, run some effect to get a new state and repeat.

iterateForeverM is almost exclusively useful for effect types. For instance, A may be some state, we may take the current state, run some effect to get a new state and repeat.

Inherited from:
FlatMap
def iterateForeverM[A, B](a: A)(f: A => F[A]): F[B]
Implicitly added by genConcurrentForOptionT

iterateForeverM is almost exclusively useful for effect types. For instance, A may be some state, we may take the current state, run some effect to get a new state and repeat.

iterateForeverM is almost exclusively useful for effect types. For instance, A may be some state, we may take the current state, run some effect to get a new state and repeat.

Inherited from:
FlatMap
def iterateForeverM[A, B](a: A)(f: A => F[A]): F[B]

iterateForeverM is almost exclusively useful for effect types. For instance, A may be some state, we may take the current state, run some effect to get a new state and repeat.

iterateForeverM is almost exclusively useful for effect types. For instance, A may be some state, we may take the current state, run some effect to get a new state and repeat.

Inherited from:
FlatMap
def iterateUntil[A](f: F[A])(p: A => Boolean): F[A]
Implicitly added by genConcurrentForEitherT

Execute an action repeatedly until its result satisfies the given predicate and return that result, discarding all others.

Execute an action repeatedly until its result satisfies the given predicate and return that result, discarding all others.

Inherited from:
Monad
def iterateUntil[A](f: F[A])(p: A => Boolean): F[A]
Implicitly added by genConcurrentForKleisli

Execute an action repeatedly until its result satisfies the given predicate and return that result, discarding all others.

Execute an action repeatedly until its result satisfies the given predicate and return that result, discarding all others.

Inherited from:
Monad
def iterateUntil[A](f: F[A])(p: A => Boolean): F[A]
Implicitly added by genConcurrentForOptionT

Execute an action repeatedly until its result satisfies the given predicate and return that result, discarding all others.

Execute an action repeatedly until its result satisfies the given predicate and return that result, discarding all others.

Inherited from:
Monad
def iterateUntil[A](f: F[A])(p: A => Boolean): F[A]

Execute an action repeatedly until its result satisfies the given predicate and return that result, discarding all others.

Execute an action repeatedly until its result satisfies the given predicate and return that result, discarding all others.

Inherited from:
Monad
def iterateUntilM[A](init: A)(f: A => F[A])(p: A => Boolean): F[A]
Implicitly added by genConcurrentForEitherT

Apply a monadic function iteratively until its result satisfies the given predicate and return that result.

Apply a monadic function iteratively until its result satisfies the given predicate and return that result.

Inherited from:
Monad
def iterateUntilM[A](init: A)(f: A => F[A])(p: A => Boolean): F[A]
Implicitly added by genConcurrentForKleisli

Apply a monadic function iteratively until its result satisfies the given predicate and return that result.

Apply a monadic function iteratively until its result satisfies the given predicate and return that result.

Inherited from:
Monad
def iterateUntilM[A](init: A)(f: A => F[A])(p: A => Boolean): F[A]
Implicitly added by genConcurrentForOptionT

Apply a monadic function iteratively until its result satisfies the given predicate and return that result.

Apply a monadic function iteratively until its result satisfies the given predicate and return that result.

Inherited from:
Monad
def iterateUntilM[A](init: A)(f: A => F[A])(p: A => Boolean): F[A]

Apply a monadic function iteratively until its result satisfies the given predicate and return that result.

Apply a monadic function iteratively until its result satisfies the given predicate and return that result.

Inherited from:
Monad
def iterateWhile[A](f: F[A])(p: A => Boolean): F[A]
Implicitly added by genConcurrentForEitherT

Execute an action repeatedly until its result fails to satisfy the given predicate and return that result, discarding all others.

Execute an action repeatedly until its result fails to satisfy the given predicate and return that result, discarding all others.

Inherited from:
Monad
def iterateWhile[A](f: F[A])(p: A => Boolean): F[A]
Implicitly added by genConcurrentForKleisli

Execute an action repeatedly until its result fails to satisfy the given predicate and return that result, discarding all others.

Execute an action repeatedly until its result fails to satisfy the given predicate and return that result, discarding all others.

Inherited from:
Monad
def iterateWhile[A](f: F[A])(p: A => Boolean): F[A]
Implicitly added by genConcurrentForOptionT

Execute an action repeatedly until its result fails to satisfy the given predicate and return that result, discarding all others.

Execute an action repeatedly until its result fails to satisfy the given predicate and return that result, discarding all others.

Inherited from:
Monad
def iterateWhile[A](f: F[A])(p: A => Boolean): F[A]

Execute an action repeatedly until its result fails to satisfy the given predicate and return that result, discarding all others.

Execute an action repeatedly until its result fails to satisfy the given predicate and return that result, discarding all others.

Inherited from:
Monad
def iterateWhileM[A](init: A)(f: A => F[A])(p: A => Boolean): F[A]
Implicitly added by genConcurrentForEitherT

Apply a monadic function iteratively until its result fails to satisfy the given predicate and return that result.

Apply a monadic function iteratively until its result fails to satisfy the given predicate and return that result.

Inherited from:
Monad
def iterateWhileM[A](init: A)(f: A => F[A])(p: A => Boolean): F[A]
Implicitly added by genConcurrentForKleisli

Apply a monadic function iteratively until its result fails to satisfy the given predicate and return that result.

Apply a monadic function iteratively until its result fails to satisfy the given predicate and return that result.

Inherited from:
Monad
def iterateWhileM[A](init: A)(f: A => F[A])(p: A => Boolean): F[A]
Implicitly added by genConcurrentForOptionT

Apply a monadic function iteratively until its result fails to satisfy the given predicate and return that result.

Apply a monadic function iteratively until its result fails to satisfy the given predicate and return that result.

Inherited from:
Monad
def iterateWhileM[A](init: A)(f: A => F[A])(p: A => Boolean): F[A]

Apply a monadic function iteratively until its result fails to satisfy the given predicate and return that result.

Apply a monadic function iteratively until its result fails to satisfy the given predicate and return that result.

Inherited from:
Monad
def lift[A, B](f: A => B): F[A] => F[B]
Implicitly added by genConcurrentForEitherT

Lift a function f to operate on Functors

Lift a function f to operate on Functors

Example:

scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForOption

scala> val o = Option(42)
scala> Functor[Option].lift((x: Int) => x + 10)(o)
res0: Option[Int] = Some(52)
Inherited from:
Functor
def lift[A, B](f: A => B): F[A] => F[B]
Implicitly added by genConcurrentForKleisli

Lift a function f to operate on Functors

Lift a function f to operate on Functors

Example:

scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForOption

scala> val o = Option(42)
scala> Functor[Option].lift((x: Int) => x + 10)(o)
res0: Option[Int] = Some(52)
Inherited from:
Functor
def lift[A, B](f: A => B): F[A] => F[B]
Implicitly added by genConcurrentForOptionT

Lift a function f to operate on Functors

Lift a function f to operate on Functors

Example:

scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForOption

scala> val o = Option(42)
scala> Functor[Option].lift((x: Int) => x + 10)(o)
res0: Option[Int] = Some(52)
Inherited from:
Functor
def lift[A, B](f: A => B): F[A] => F[B]

Lift a function f to operate on Functors

Lift a function f to operate on Functors

Example:

scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForOption

scala> val o = Option(42)
scala> Functor[Option].lift((x: Int) => x + 10)(o)
res0: Option[Int] = Some(52)
Inherited from:
Functor
override def map[A, B](fa: F[A])(f: A => B): F[B]
Definition Classes
Inherited from:
Monad
def map10[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9) => Z): F[Z]
Implicitly added by genConcurrentForEitherT
Inherited from:
ApplyArityFunctions
def map10[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9) => Z): F[Z]
Implicitly added by genConcurrentForKleisli
Inherited from:
ApplyArityFunctions
def map10[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9) => Z): F[Z]
Implicitly added by genConcurrentForOptionT
Inherited from:
ApplyArityFunctions
def map10[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9) => Z): F[Z]
Inherited from:
ApplyArityFunctions
def map11[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10) => Z): F[Z]
Implicitly added by genConcurrentForEitherT
Inherited from:
ApplyArityFunctions
def map11[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10) => Z): F[Z]
Implicitly added by genConcurrentForKleisli
Inherited from:
ApplyArityFunctions
def map11[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10) => Z): F[Z]
Implicitly added by genConcurrentForOptionT
Inherited from:
ApplyArityFunctions
def map11[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10) => Z): F[Z]
Inherited from:
ApplyArityFunctions
def map12[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11) => Z): F[Z]
Implicitly added by genConcurrentForEitherT
Inherited from:
ApplyArityFunctions
def map12[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11) => Z): F[Z]
Implicitly added by genConcurrentForKleisli
Inherited from:
ApplyArityFunctions
def map12[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11) => Z): F[Z]
Implicitly added by genConcurrentForOptionT
Inherited from:
ApplyArityFunctions
def map12[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11) => Z): F[Z]
Inherited from:
ApplyArityFunctions
def map13[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12) => Z): F[Z]
Implicitly added by genConcurrentForEitherT
Inherited from:
ApplyArityFunctions
def map13[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12) => Z): F[Z]
Implicitly added by genConcurrentForKleisli
Inherited from:
ApplyArityFunctions
def map13[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12) => Z): F[Z]
Implicitly added by genConcurrentForOptionT
Inherited from:
ApplyArityFunctions
def map13[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12) => Z): F[Z]
Inherited from:
ApplyArityFunctions
def map14[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13) => Z): F[Z]
Implicitly added by genConcurrentForEitherT
Inherited from:
ApplyArityFunctions
def map14[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13) => Z): F[Z]
Implicitly added by genConcurrentForKleisli
Inherited from:
ApplyArityFunctions
def map14[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13) => Z): F[Z]
Implicitly added by genConcurrentForOptionT
Inherited from:
ApplyArityFunctions
def map14[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13) => Z): F[Z]
Inherited from:
ApplyArityFunctions
def map15[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14) => Z): F[Z]
Implicitly added by genConcurrentForEitherT
Inherited from:
ApplyArityFunctions
def map15[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14) => Z): F[Z]
Implicitly added by genConcurrentForKleisli
Inherited from:
ApplyArityFunctions
def map15[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14) => Z): F[Z]
Implicitly added by genConcurrentForOptionT
Inherited from:
ApplyArityFunctions
def map15[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14) => Z): F[Z]
Inherited from:
ApplyArityFunctions
def map16[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15) => Z): F[Z]
Implicitly added by genConcurrentForEitherT
Inherited from:
ApplyArityFunctions
def map16[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15) => Z): F[Z]
Implicitly added by genConcurrentForKleisli
Inherited from:
ApplyArityFunctions
def map16[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15) => Z): F[Z]
Implicitly added by genConcurrentForOptionT
Inherited from:
ApplyArityFunctions
def map16[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15) => Z): F[Z]
Inherited from:
ApplyArityFunctions
def map17[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16) => Z): F[Z]
Implicitly added by genConcurrentForEitherT
Inherited from:
ApplyArityFunctions
def map17[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16) => Z): F[Z]
Implicitly added by genConcurrentForKleisli
Inherited from:
ApplyArityFunctions
def map17[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16) => Z): F[Z]
Implicitly added by genConcurrentForOptionT
Inherited from:
ApplyArityFunctions
def map17[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16) => Z): F[Z]
Inherited from:
ApplyArityFunctions
def map18[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17) => Z): F[Z]
Implicitly added by genConcurrentForEitherT
Inherited from:
ApplyArityFunctions
def map18[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17) => Z): F[Z]
Implicitly added by genConcurrentForKleisli
Inherited from:
ApplyArityFunctions
def map18[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17) => Z): F[Z]
Implicitly added by genConcurrentForOptionT
Inherited from:
ApplyArityFunctions
def map18[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17) => Z): F[Z]
Inherited from:
ApplyArityFunctions
def map19[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18) => Z): F[Z]
Implicitly added by genConcurrentForEitherT
Inherited from:
ApplyArityFunctions
def map19[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18) => Z): F[Z]
Implicitly added by genConcurrentForKleisli
Inherited from:
ApplyArityFunctions
def map19[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18) => Z): F[Z]
Implicitly added by genConcurrentForOptionT
Inherited from:
ApplyArityFunctions
def map19[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18) => Z): F[Z]
Inherited from:
ApplyArityFunctions
override def map2[A, B, Z](fa: F[A], fb: F[B])(f: (A, B) => Z): F[Z]
Definition Classes
Inherited from:
FlatMap
def map20[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19) => Z): F[Z]
Implicitly added by genConcurrentForEitherT
Inherited from:
ApplyArityFunctions
def map20[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19) => Z): F[Z]
Implicitly added by genConcurrentForKleisli
Inherited from:
ApplyArityFunctions
def map20[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19) => Z): F[Z]
Implicitly added by genConcurrentForOptionT
Inherited from:
ApplyArityFunctions
def map20[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19) => Z): F[Z]
Inherited from:
ApplyArityFunctions
def map21[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19], f20: F[A20])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20) => Z): F[Z]
Implicitly added by genConcurrentForEitherT
Inherited from:
ApplyArityFunctions
def map21[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19], f20: F[A20])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20) => Z): F[Z]
Implicitly added by genConcurrentForKleisli
Inherited from:
ApplyArityFunctions
def map21[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19], f20: F[A20])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20) => Z): F[Z]
Implicitly added by genConcurrentForOptionT
Inherited from:
ApplyArityFunctions
def map21[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19], f20: F[A20])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20) => Z): F[Z]
Inherited from:
ApplyArityFunctions
def map22[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, A21, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19], f20: F[A20], f21: F[A21])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, A21) => Z): F[Z]
Implicitly added by genConcurrentForEitherT
Inherited from:
ApplyArityFunctions
def map22[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, A21, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19], f20: F[A20], f21: F[A21])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, A21) => Z): F[Z]
Implicitly added by genConcurrentForKleisli
Inherited from:
ApplyArityFunctions
def map22[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, A21, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19], f20: F[A20], f21: F[A21])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, A21) => Z): F[Z]
Implicitly added by genConcurrentForOptionT
Inherited from:
ApplyArityFunctions
def map22[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, A21, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19], f20: F[A20], f21: F[A21])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, A21) => Z): F[Z]
Inherited from:
ApplyArityFunctions
override def map2Eval[A, B, Z](fa: F[A], fb: Eval[F[B]])(f: (A, B) => Z): Eval[F[Z]]
Definition Classes
Inherited from:
FlatMap
def map3[A0, A1, A2, Z](f0: F[A0], f1: F[A1], f2: F[A2])(f: (A0, A1, A2) => Z): F[Z]
Implicitly added by genConcurrentForEitherT
Inherited from:
ApplyArityFunctions
def map3[A0, A1, A2, Z](f0: F[A0], f1: F[A1], f2: F[A2])(f: (A0, A1, A2) => Z): F[Z]
Implicitly added by genConcurrentForKleisli
Inherited from:
ApplyArityFunctions
def map3[A0, A1, A2, Z](f0: F[A0], f1: F[A1], f2: F[A2])(f: (A0, A1, A2) => Z): F[Z]
Implicitly added by genConcurrentForOptionT
Inherited from:
ApplyArityFunctions
def map3[A0, A1, A2, Z](f0: F[A0], f1: F[A1], f2: F[A2])(f: (A0, A1, A2) => Z): F[Z]
Inherited from:
ApplyArityFunctions
def map4[A0, A1, A2, A3, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3])(f: (A0, A1, A2, A3) => Z): F[Z]
Implicitly added by genConcurrentForEitherT
Inherited from:
ApplyArityFunctions
def map4[A0, A1, A2, A3, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3])(f: (A0, A1, A2, A3) => Z): F[Z]
Implicitly added by genConcurrentForKleisli
Inherited from:
ApplyArityFunctions
def map4[A0, A1, A2, A3, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3])(f: (A0, A1, A2, A3) => Z): F[Z]
Implicitly added by genConcurrentForOptionT
Inherited from:
ApplyArityFunctions
def map4[A0, A1, A2, A3, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3])(f: (A0, A1, A2, A3) => Z): F[Z]
Inherited from:
ApplyArityFunctions
def map5[A0, A1, A2, A3, A4, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4])(f: (A0, A1, A2, A3, A4) => Z): F[Z]
Implicitly added by genConcurrentForEitherT
Inherited from:
ApplyArityFunctions
def map5[A0, A1, A2, A3, A4, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4])(f: (A0, A1, A2, A3, A4) => Z): F[Z]
Implicitly added by genConcurrentForKleisli
Inherited from:
ApplyArityFunctions
def map5[A0, A1, A2, A3, A4, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4])(f: (A0, A1, A2, A3, A4) => Z): F[Z]
Implicitly added by genConcurrentForOptionT
Inherited from:
ApplyArityFunctions
def map5[A0, A1, A2, A3, A4, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4])(f: (A0, A1, A2, A3, A4) => Z): F[Z]
Inherited from:
ApplyArityFunctions
def map6[A0, A1, A2, A3, A4, A5, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5])(f: (A0, A1, A2, A3, A4, A5) => Z): F[Z]
Implicitly added by genConcurrentForEitherT
Inherited from:
ApplyArityFunctions
def map6[A0, A1, A2, A3, A4, A5, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5])(f: (A0, A1, A2, A3, A4, A5) => Z): F[Z]
Implicitly added by genConcurrentForKleisli
Inherited from:
ApplyArityFunctions
def map6[A0, A1, A2, A3, A4, A5, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5])(f: (A0, A1, A2, A3, A4, A5) => Z): F[Z]
Implicitly added by genConcurrentForOptionT
Inherited from:
ApplyArityFunctions
def map6[A0, A1, A2, A3, A4, A5, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5])(f: (A0, A1, A2, A3, A4, A5) => Z): F[Z]
Inherited from:
ApplyArityFunctions
def map7[A0, A1, A2, A3, A4, A5, A6, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6])(f: (A0, A1, A2, A3, A4, A5, A6) => Z): F[Z]
Implicitly added by genConcurrentForEitherT
Inherited from:
ApplyArityFunctions
def map7[A0, A1, A2, A3, A4, A5, A6, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6])(f: (A0, A1, A2, A3, A4, A5, A6) => Z): F[Z]
Implicitly added by genConcurrentForKleisli
Inherited from:
ApplyArityFunctions
def map7[A0, A1, A2, A3, A4, A5, A6, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6])(f: (A0, A1, A2, A3, A4, A5, A6) => Z): F[Z]
Implicitly added by genConcurrentForOptionT
Inherited from:
ApplyArityFunctions
def map7[A0, A1, A2, A3, A4, A5, A6, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6])(f: (A0, A1, A2, A3, A4, A5, A6) => Z): F[Z]
Inherited from:
ApplyArityFunctions
def map8[A0, A1, A2, A3, A4, A5, A6, A7, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7])(f: (A0, A1, A2, A3, A4, A5, A6, A7) => Z): F[Z]
Implicitly added by genConcurrentForEitherT
Inherited from:
ApplyArityFunctions
def map8[A0, A1, A2, A3, A4, A5, A6, A7, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7])(f: (A0, A1, A2, A3, A4, A5, A6, A7) => Z): F[Z]
Implicitly added by genConcurrentForKleisli
Inherited from:
ApplyArityFunctions
def map8[A0, A1, A2, A3, A4, A5, A6, A7, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7])(f: (A0, A1, A2, A3, A4, A5, A6, A7) => Z): F[Z]
Implicitly added by genConcurrentForOptionT
Inherited from:
ApplyArityFunctions
def map8[A0, A1, A2, A3, A4, A5, A6, A7, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7])(f: (A0, A1, A2, A3, A4, A5, A6, A7) => Z): F[Z]
Inherited from:
ApplyArityFunctions
def map9[A0, A1, A2, A3, A4, A5, A6, A7, A8, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8) => Z): F[Z]
Implicitly added by genConcurrentForEitherT
Inherited from:
ApplyArityFunctions
def map9[A0, A1, A2, A3, A4, A5, A6, A7, A8, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8) => Z): F[Z]
Implicitly added by genConcurrentForKleisli
Inherited from:
ApplyArityFunctions
def map9[A0, A1, A2, A3, A4, A5, A6, A7, A8, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8) => Z): F[Z]
Implicitly added by genConcurrentForOptionT
Inherited from:
ApplyArityFunctions
def map9[A0, A1, A2, A3, A4, A5, A6, A7, A8, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8) => Z): F[Z]
Inherited from:
ApplyArityFunctions
def mproduct[A, B](fa: F[A])(f: A => F[B]): F[(A, B)]
Implicitly added by genConcurrentForEitherT

Pair A with the result of function application.

Pair A with the result of function application.

Example:

scala> import cats.implicits._
scala> List("12", "34", "56").mproduct(_.toList)
res0: List[(String, Char)] = List((12,1), (12,2), (34,3), (34,4), (56,5), (56,6))
Inherited from:
FlatMap
def mproduct[A, B](fa: F[A])(f: A => F[B]): F[(A, B)]
Implicitly added by genConcurrentForKleisli

Pair A with the result of function application.

Pair A with the result of function application.

Example:

scala> import cats.implicits._
scala> List("12", "34", "56").mproduct(_.toList)
res0: List[(String, Char)] = List((12,1), (12,2), (34,3), (34,4), (56,5), (56,6))
Inherited from:
FlatMap
def mproduct[A, B](fa: F[A])(f: A => F[B]): F[(A, B)]
Implicitly added by genConcurrentForOptionT

Pair A with the result of function application.

Pair A with the result of function application.

Example:

scala> import cats.implicits._
scala> List("12", "34", "56").mproduct(_.toList)
res0: List[(String, Char)] = List((12,1), (12,2), (34,3), (34,4), (56,5), (56,6))
Inherited from:
FlatMap
def mproduct[A, B](fa: F[A])(f: A => F[B]): F[(A, B)]

Pair A with the result of function application.

Pair A with the result of function application.

Example:

scala> import cats.implicits._
scala> List("12", "34", "56").mproduct(_.toList)
res0: List[(String, Char)] = List((12,1), (12,2), (34,3), (34,4), (56,5), (56,6))
Inherited from:
FlatMap
def never[A]: F[A]
Implicitly added by genConcurrentForEitherT

A non-terminating effect that never completes, which causes a fiber to semantically block indefinitely. This is the purely functional, asynchronous equivalent of an infinite while loop in Java, but no native threads are blocked.

A non-terminating effect that never completes, which causes a fiber to semantically block indefinitely. This is the purely functional, asynchronous equivalent of an infinite while loop in Java, but no native threads are blocked.

A fiber that is suspended in never can be canceled if it is completely unmasked before it suspends:


 // ignoring race conditions between `start` and `cancel`
 F.never.start.flatMap(_.cancel) <-> F.unit

However, if the fiber is masked, cancellers will be semantically blocked forever:


 // ignoring race conditions between `start` and `cancel`
 F.uncancelable(_ => F.never).start.flatMap(_.cancel) <-> F.never

Inherited from:
GenSpawn
def never[A]: F[A]
Implicitly added by genConcurrentForKleisli

A non-terminating effect that never completes, which causes a fiber to semantically block indefinitely. This is the purely functional, asynchronous equivalent of an infinite while loop in Java, but no native threads are blocked.

A non-terminating effect that never completes, which causes a fiber to semantically block indefinitely. This is the purely functional, asynchronous equivalent of an infinite while loop in Java, but no native threads are blocked.

A fiber that is suspended in never can be canceled if it is completely unmasked before it suspends:


 // ignoring race conditions between `start` and `cancel`
 F.never.start.flatMap(_.cancel) <-> F.unit

However, if the fiber is masked, cancellers will be semantically blocked forever:


 // ignoring race conditions between `start` and `cancel`
 F.uncancelable(_ => F.never).start.flatMap(_.cancel) <-> F.never

Inherited from:
GenSpawn
def never[A]: F[A]
Implicitly added by genConcurrentForOptionT

A non-terminating effect that never completes, which causes a fiber to semantically block indefinitely. This is the purely functional, asynchronous equivalent of an infinite while loop in Java, but no native threads are blocked.

A non-terminating effect that never completes, which causes a fiber to semantically block indefinitely. This is the purely functional, asynchronous equivalent of an infinite while loop in Java, but no native threads are blocked.

A fiber that is suspended in never can be canceled if it is completely unmasked before it suspends:


 // ignoring race conditions between `start` and `cancel`
 F.never.start.flatMap(_.cancel) <-> F.unit

However, if the fiber is masked, cancellers will be semantically blocked forever:


 // ignoring race conditions between `start` and `cancel`
 F.uncancelable(_ => F.never).start.flatMap(_.cancel) <-> F.never

Inherited from:
GenSpawn
def never[A]: F[A]

A non-terminating effect that never completes, which causes a fiber to semantically block indefinitely. This is the purely functional, asynchronous equivalent of an infinite while loop in Java, but no native threads are blocked.

A non-terminating effect that never completes, which causes a fiber to semantically block indefinitely. This is the purely functional, asynchronous equivalent of an infinite while loop in Java, but no native threads are blocked.

A fiber that is suspended in never can be canceled if it is completely unmasked before it suspends:


 // ignoring race conditions between `start` and `cancel`
 F.never.start.flatMap(_.cancel) <-> F.unit

However, if the fiber is masked, cancellers will be semantically blocked forever:


 // ignoring race conditions between `start` and `cancel`
 F.uncancelable(_ => F.never).start.flatMap(_.cancel) <-> F.never

Inherited from:
GenSpawn
def onCancel[A](fa: F[A], fin: F[Unit]): F[A]
Implicitly added by genConcurrentForEitherT

Registers a finalizer that is invoked if cancelation is observed during the evaluation of fa. If the evaluation of fa completes without encountering a cancelation, the finalizer is unregistered before proceeding.

Registers a finalizer that is invoked if cancelation is observed during the evaluation of fa. If the evaluation of fa completes without encountering a cancelation, the finalizer is unregistered before proceeding.

During finalization, all actively registered finalizers are run exactly once. The order by which finalizers are run is dictated by nesting: innermost finalizers are run before outermost finalizers. For example, in the following program, the finalizer f1 is run before the finalizer f2:


 F.onCancel(F.onCancel(F.canceled, f1), f2)

If a finalizer throws an error during evaluation, the error is suppressed, and implementations may choose to report it via a side channel. Finalizers are always uncancelable, so cannot otherwise be interrupted.

Value parameters:
fa

The effect that is evaluated after fin is registered.

fin

The finalizer to register before evaluating fa.

Inherited from:
MonadCancel
def onCancel[A](fa: F[A], fin: F[Unit]): F[A]
Implicitly added by genConcurrentForKleisli

Registers a finalizer that is invoked if cancelation is observed during the evaluation of fa. If the evaluation of fa completes without encountering a cancelation, the finalizer is unregistered before proceeding.

Registers a finalizer that is invoked if cancelation is observed during the evaluation of fa. If the evaluation of fa completes without encountering a cancelation, the finalizer is unregistered before proceeding.

During finalization, all actively registered finalizers are run exactly once. The order by which finalizers are run is dictated by nesting: innermost finalizers are run before outermost finalizers. For example, in the following program, the finalizer f1 is run before the finalizer f2:


 F.onCancel(F.onCancel(F.canceled, f1), f2)

If a finalizer throws an error during evaluation, the error is suppressed, and implementations may choose to report it via a side channel. Finalizers are always uncancelable, so cannot otherwise be interrupted.

Value parameters:
fa

The effect that is evaluated after fin is registered.

fin

The finalizer to register before evaluating fa.

Inherited from:
MonadCancel
def onCancel[A](fa: F[A], fin: F[Unit]): F[A]
Implicitly added by genConcurrentForOptionT

Registers a finalizer that is invoked if cancelation is observed during the evaluation of fa. If the evaluation of fa completes without encountering a cancelation, the finalizer is unregistered before proceeding.

Registers a finalizer that is invoked if cancelation is observed during the evaluation of fa. If the evaluation of fa completes without encountering a cancelation, the finalizer is unregistered before proceeding.

During finalization, all actively registered finalizers are run exactly once. The order by which finalizers are run is dictated by nesting: innermost finalizers are run before outermost finalizers. For example, in the following program, the finalizer f1 is run before the finalizer f2:


 F.onCancel(F.onCancel(F.canceled, f1), f2)

If a finalizer throws an error during evaluation, the error is suppressed, and implementations may choose to report it via a side channel. Finalizers are always uncancelable, so cannot otherwise be interrupted.

Value parameters:
fa

The effect that is evaluated after fin is registered.

fin

The finalizer to register before evaluating fa.

Inherited from:
MonadCancel
def onCancel[A](fa: F[A], fin: F[Unit]): F[A]

Registers a finalizer that is invoked if cancelation is observed during the evaluation of fa. If the evaluation of fa completes without encountering a cancelation, the finalizer is unregistered before proceeding.

Registers a finalizer that is invoked if cancelation is observed during the evaluation of fa. If the evaluation of fa completes without encountering a cancelation, the finalizer is unregistered before proceeding.

During finalization, all actively registered finalizers are run exactly once. The order by which finalizers are run is dictated by nesting: innermost finalizers are run before outermost finalizers. For example, in the following program, the finalizer f1 is run before the finalizer f2:


 F.onCancel(F.onCancel(F.canceled, f1), f2)

If a finalizer throws an error during evaluation, the error is suppressed, and implementations may choose to report it via a side channel. Finalizers are always uncancelable, so cannot otherwise be interrupted.

Value parameters:
fa

The effect that is evaluated after fin is registered.

fin

The finalizer to register before evaluating fa.

Inherited from:
MonadCancel
def onError[A](fa: F[A])(pf: PartialFunction[E, F[Unit]]): F[A]
Implicitly added by genConcurrentForEitherT

Execute a callback on certain errors, then rethrow them. Any non matching error is rethrown as well.

Execute a callback on certain errors, then rethrow them. Any non matching error is rethrown as well.

In the following example, only one of the errors is logged, but they are both rethrown, to be possibly handled by another layer of the program:

scala> import cats._, data._, implicits._

scala> case class Err(msg: String)

scala> type F[A] = EitherT[State[String, *], Err, A]

scala> val action: PartialFunction[Err, F[Unit]] = {
    |   case Err("one") => EitherT.liftF(State.set("one"))
    | }

scala> val prog1: F[Int] = (Err("one")).raiseError[F, Int]
scala> val prog2: F[Int] = (Err("two")).raiseError[F, Int]

scala> prog1.onError(action).value.run("").value

res0: (String, Either[Err,Int]) = (one,Left(Err(one)))

scala> prog2.onError(action).value.run("").value
res1: (String, Either[Err,Int]) = ("",Left(Err(two)))
Inherited from:
ApplicativeError
def onError[A](fa: F[A])(pf: PartialFunction[E, F[Unit]]): F[A]
Implicitly added by genConcurrentForKleisli

Execute a callback on certain errors, then rethrow them. Any non matching error is rethrown as well.

Execute a callback on certain errors, then rethrow them. Any non matching error is rethrown as well.

In the following example, only one of the errors is logged, but they are both rethrown, to be possibly handled by another layer of the program:

scala> import cats._, data._, implicits._

scala> case class Err(msg: String)

scala> type F[A] = EitherT[State[String, *], Err, A]

scala> val action: PartialFunction[Err, F[Unit]] = {
    |   case Err("one") => EitherT.liftF(State.set("one"))
    | }

scala> val prog1: F[Int] = (Err("one")).raiseError[F, Int]
scala> val prog2: F[Int] = (Err("two")).raiseError[F, Int]

scala> prog1.onError(action).value.run("").value

res0: (String, Either[Err,Int]) = (one,Left(Err(one)))

scala> prog2.onError(action).value.run("").value
res1: (String, Either[Err,Int]) = ("",Left(Err(two)))
Inherited from:
ApplicativeError
def onError[A](fa: F[A])(pf: PartialFunction[E, F[Unit]]): F[A]
Implicitly added by genConcurrentForOptionT

Execute a callback on certain errors, then rethrow them. Any non matching error is rethrown as well.

Execute a callback on certain errors, then rethrow them. Any non matching error is rethrown as well.

In the following example, only one of the errors is logged, but they are both rethrown, to be possibly handled by another layer of the program:

scala> import cats._, data._, implicits._

scala> case class Err(msg: String)

scala> type F[A] = EitherT[State[String, *], Err, A]

scala> val action: PartialFunction[Err, F[Unit]] = {
    |   case Err("one") => EitherT.liftF(State.set("one"))
    | }

scala> val prog1: F[Int] = (Err("one")).raiseError[F, Int]
scala> val prog2: F[Int] = (Err("two")).raiseError[F, Int]

scala> prog1.onError(action).value.run("").value

res0: (String, Either[Err,Int]) = (one,Left(Err(one)))

scala> prog2.onError(action).value.run("").value
res1: (String, Either[Err,Int]) = ("",Left(Err(two)))
Inherited from:
ApplicativeError
def onError[A](fa: F[A])(pf: PartialFunction[E, F[Unit]]): F[A]

Execute a callback on certain errors, then rethrow them. Any non matching error is rethrown as well.

Execute a callback on certain errors, then rethrow them. Any non matching error is rethrown as well.

In the following example, only one of the errors is logged, but they are both rethrown, to be possibly handled by another layer of the program:

scala> import cats._, data._, implicits._

scala> case class Err(msg: String)

scala> type F[A] = EitherT[State[String, *], Err, A]

scala> val action: PartialFunction[Err, F[Unit]] = {
    |   case Err("one") => EitherT.liftF(State.set("one"))
    | }

scala> val prog1: F[Int] = (Err("one")).raiseError[F, Int]
scala> val prog2: F[Int] = (Err("two")).raiseError[F, Int]

scala> prog1.onError(action).value.run("").value

res0: (String, Either[Err,Int]) = (one,Left(Err(one)))

scala> prog2.onError(action).value.run("").value
res1: (String, Either[Err,Int]) = ("",Left(Err(two)))
Inherited from:
ApplicativeError
def point[A](a: A): F[A]
Implicitly added by genConcurrentForEitherT

point lifts any value into a Monoidal Functor.

point lifts any value into a Monoidal Functor.

Example:

scala> import cats.implicits._

scala> InvariantMonoidal[Option].point(10)
res0: Option[Int] = Some(10)
Inherited from:
InvariantMonoidal
def point[A](a: A): F[A]
Implicitly added by genConcurrentForKleisli

point lifts any value into a Monoidal Functor.

point lifts any value into a Monoidal Functor.

Example:

scala> import cats.implicits._

scala> InvariantMonoidal[Option].point(10)
res0: Option[Int] = Some(10)
Inherited from:
InvariantMonoidal
def point[A](a: A): F[A]
Implicitly added by genConcurrentForOptionT

point lifts any value into a Monoidal Functor.

point lifts any value into a Monoidal Functor.

Example:

scala> import cats.implicits._

scala> InvariantMonoidal[Option].point(10)
res0: Option[Int] = Some(10)
Inherited from:
InvariantMonoidal
def point[A](a: A): F[A]

point lifts any value into a Monoidal Functor.

point lifts any value into a Monoidal Functor.

Example:

scala> import cats.implicits._

scala> InvariantMonoidal[Option].point(10)
res0: Option[Int] = Some(10)
Inherited from:
InvariantMonoidal
override def product[A, B](fa: F[A], fb: F[B]): F[(A, B)]
Definition Classes
Inherited from:
FlatMap
override def productL[A, B](fa: F[A])(fb: F[B]): F[A]
Definition Classes
Inherited from:
FlatMap
def productLEval[A, B](fa: F[A])(fb: Eval[F[B]]): F[A]
Implicitly added by genConcurrentForEitherT

Sequentially compose two actions, discarding any value produced by the second. This variant of productL also lets you define the evaluation strategy of the second action. For instance you can evaluate it only ''after'' the first action has finished:

Sequentially compose two actions, discarding any value produced by the second. This variant of productL also lets you define the evaluation strategy of the second action. For instance you can evaluate it only ''after'' the first action has finished:

scala> import cats.Eval
scala> import cats.implicits._
scala> var count = 0
scala> val fa: Option[Int] = Some(3)
scala> def fb: Option[Unit] = Some(count += 1)
scala> fa.productLEval(Eval.later(fb))
res0: Option[Int] = Some(3)
scala> assert(count == 1)
scala> none[Int].productLEval(Eval.later(fb))
res1: Option[Int] = None
scala> assert(count == 1)
Inherited from:
FlatMap
def productLEval[A, B](fa: F[A])(fb: Eval[F[B]]): F[A]
Implicitly added by genConcurrentForKleisli

Sequentially compose two actions, discarding any value produced by the second. This variant of productL also lets you define the evaluation strategy of the second action. For instance you can evaluate it only ''after'' the first action has finished:

Sequentially compose two actions, discarding any value produced by the second. This variant of productL also lets you define the evaluation strategy of the second action. For instance you can evaluate it only ''after'' the first action has finished:

scala> import cats.Eval
scala> import cats.implicits._
scala> var count = 0
scala> val fa: Option[Int] = Some(3)
scala> def fb: Option[Unit] = Some(count += 1)
scala> fa.productLEval(Eval.later(fb))
res0: Option[Int] = Some(3)
scala> assert(count == 1)
scala> none[Int].productLEval(Eval.later(fb))
res1: Option[Int] = None
scala> assert(count == 1)
Inherited from:
FlatMap
def productLEval[A, B](fa: F[A])(fb: Eval[F[B]]): F[A]
Implicitly added by genConcurrentForOptionT

Sequentially compose two actions, discarding any value produced by the second. This variant of productL also lets you define the evaluation strategy of the second action. For instance you can evaluate it only ''after'' the first action has finished:

Sequentially compose two actions, discarding any value produced by the second. This variant of productL also lets you define the evaluation strategy of the second action. For instance you can evaluate it only ''after'' the first action has finished:

scala> import cats.Eval
scala> import cats.implicits._
scala> var count = 0
scala> val fa: Option[Int] = Some(3)
scala> def fb: Option[Unit] = Some(count += 1)
scala> fa.productLEval(Eval.later(fb))
res0: Option[Int] = Some(3)
scala> assert(count == 1)
scala> none[Int].productLEval(Eval.later(fb))
res1: Option[Int] = None
scala> assert(count == 1)
Inherited from:
FlatMap
def productLEval[A, B](fa: F[A])(fb: Eval[F[B]]): F[A]

Sequentially compose two actions, discarding any value produced by the second. This variant of productL also lets you define the evaluation strategy of the second action. For instance you can evaluate it only ''after'' the first action has finished:

Sequentially compose two actions, discarding any value produced by the second. This variant of productL also lets you define the evaluation strategy of the second action. For instance you can evaluate it only ''after'' the first action has finished:

scala> import cats.Eval
scala> import cats.implicits._
scala> var count = 0
scala> val fa: Option[Int] = Some(3)
scala> def fb: Option[Unit] = Some(count += 1)
scala> fa.productLEval(Eval.later(fb))
res0: Option[Int] = Some(3)
scala> assert(count == 1)
scala> none[Int].productLEval(Eval.later(fb))
res1: Option[Int] = None
scala> assert(count == 1)
Inherited from:
FlatMap
override def productR[A, B](fa: F[A])(fb: F[B]): F[B]
Definition Classes
Inherited from:
FlatMap
def productREval[A, B](fa: F[A])(fb: Eval[F[B]]): F[B]
Implicitly added by genConcurrentForEitherT

Sequentially compose two actions, discarding any value produced by the first. This variant of productR also lets you define the evaluation strategy of the second action. For instance you can evaluate it only ''after'' the first action has finished:

Sequentially compose two actions, discarding any value produced by the first. This variant of productR also lets you define the evaluation strategy of the second action. For instance you can evaluate it only ''after'' the first action has finished:

scala> import cats.Eval
scala> import cats.implicits._
scala> val fa: Option[Int] = Some(3)
scala> def fb: Option[String] = Some("foo")
scala> fa.productREval(Eval.later(fb))
res0: Option[String] = Some(foo)
Inherited from:
FlatMap
def productREval[A, B](fa: F[A])(fb: Eval[F[B]]): F[B]
Implicitly added by genConcurrentForKleisli

Sequentially compose two actions, discarding any value produced by the first. This variant of productR also lets you define the evaluation strategy of the second action. For instance you can evaluate it only ''after'' the first action has finished:

Sequentially compose two actions, discarding any value produced by the first. This variant of productR also lets you define the evaluation strategy of the second action. For instance you can evaluate it only ''after'' the first action has finished:

scala> import cats.Eval
scala> import cats.implicits._
scala> val fa: Option[Int] = Some(3)
scala> def fb: Option[String] = Some("foo")
scala> fa.productREval(Eval.later(fb))
res0: Option[String] = Some(foo)
Inherited from:
FlatMap
def productREval[A, B](fa: F[A])(fb: Eval[F[B]]): F[B]
Implicitly added by genConcurrentForOptionT

Sequentially compose two actions, discarding any value produced by the first. This variant of productR also lets you define the evaluation strategy of the second action. For instance you can evaluate it only ''after'' the first action has finished:

Sequentially compose two actions, discarding any value produced by the first. This variant of productR also lets you define the evaluation strategy of the second action. For instance you can evaluate it only ''after'' the first action has finished:

scala> import cats.Eval
scala> import cats.implicits._
scala> val fa: Option[Int] = Some(3)
scala> def fb: Option[String] = Some("foo")
scala> fa.productREval(Eval.later(fb))
res0: Option[String] = Some(foo)
Inherited from:
FlatMap
def productREval[A, B](fa: F[A])(fb: Eval[F[B]]): F[B]

Sequentially compose two actions, discarding any value produced by the first. This variant of productR also lets you define the evaluation strategy of the second action. For instance you can evaluate it only ''after'' the first action has finished:

Sequentially compose two actions, discarding any value produced by the first. This variant of productR also lets you define the evaluation strategy of the second action. For instance you can evaluate it only ''after'' the first action has finished:

scala> import cats.Eval
scala> import cats.implicits._
scala> val fa: Option[Int] = Some(3)
scala> def fb: Option[String] = Some("foo")
scala> fa.productREval(Eval.later(fb))
res0: Option[String] = Some(foo)
Inherited from:
FlatMap
def pure[A](x: A): F[A]
Implicitly added by genConcurrentForEitherT

pure lifts any value into the Applicative Functor.

pure lifts any value into the Applicative Functor.

Example:

scala> import cats.implicits._

scala> Applicative[Option].pure(10)
res0: Option[Int] = Some(10)
Inherited from:
Applicative
def pure[A](x: A): F[A]
Implicitly added by genConcurrentForKleisli

pure lifts any value into the Applicative Functor.

pure lifts any value into the Applicative Functor.

Example:

scala> import cats.implicits._

scala> Applicative[Option].pure(10)
res0: Option[Int] = Some(10)
Inherited from:
Applicative
def pure[A](x: A): F[A]
Implicitly added by genConcurrentForOptionT

pure lifts any value into the Applicative Functor.

pure lifts any value into the Applicative Functor.

Example:

scala> import cats.implicits._

scala> Applicative[Option].pure(10)
res0: Option[Int] = Some(10)
Inherited from:
Applicative
def pure[A](x: A): F[A]

pure lifts any value into the Applicative Functor.

pure lifts any value into the Applicative Functor.

Example:

scala> import cats.implicits._

scala> Applicative[Option].pure(10)
res0: Option[Int] = Some(10)
Inherited from:
Applicative
def race[A, B](fa: F[A], fb: F[B]): F[Either[A, B]]
Implicitly added by genConcurrentForEitherT

Races the evaluation of two fibers that returns the result of the winner, except in the case of cancelation.

Races the evaluation of two fibers that returns the result of the winner, except in the case of cancelation.

The semantics of race are described by the following rules:

  1. If the winner completes with Outcome.Succeeded, the race returns the successful value. The loser is canceled before returning. 2. If the winner completes with Outcome.Errored, the race raises the error. The loser is canceled before returning. 3. If the winner completes with Outcome.Canceled, the race returns the result of the loser, consistent with the first two rules. 4. If both the winner and loser complete with Outcome.Canceled, the race is canceled. 8. If the race is masked and is canceled because both participants canceled, the fiber will block indefinitely.
Value parameters:
fa

the effect for the first racing fiber

fb

the effect for the second racing fiber

See also:

raceOutcome for a variant that returns the outcome of the winner.

Inherited from:
GenSpawn
def race[A, B](fa: F[A], fb: F[B]): F[Either[A, B]]
Implicitly added by genConcurrentForKleisli

Races the evaluation of two fibers that returns the result of the winner, except in the case of cancelation.

Races the evaluation of two fibers that returns the result of the winner, except in the case of cancelation.

The semantics of race are described by the following rules:

  1. If the winner completes with Outcome.Succeeded, the race returns the successful value. The loser is canceled before returning. 2. If the winner completes with Outcome.Errored, the race raises the error. The loser is canceled before returning. 3. If the winner completes with Outcome.Canceled, the race returns the result of the loser, consistent with the first two rules. 4. If both the winner and loser complete with Outcome.Canceled, the race is canceled. 8. If the race is masked and is canceled because both participants canceled, the fiber will block indefinitely.
Value parameters:
fa

the effect for the first racing fiber

fb

the effect for the second racing fiber

See also:

raceOutcome for a variant that returns the outcome of the winner.

Inherited from:
GenSpawn
def race[A, B](fa: F[A], fb: F[B]): F[Either[A, B]]
Implicitly added by genConcurrentForOptionT

Races the evaluation of two fibers that returns the result of the winner, except in the case of cancelation.

Races the evaluation of two fibers that returns the result of the winner, except in the case of cancelation.

The semantics of race are described by the following rules:

  1. If the winner completes with Outcome.Succeeded, the race returns the successful value. The loser is canceled before returning. 2. If the winner completes with Outcome.Errored, the race raises the error. The loser is canceled before returning. 3. If the winner completes with Outcome.Canceled, the race returns the result of the loser, consistent with the first two rules. 4. If both the winner and loser complete with Outcome.Canceled, the race is canceled. 8. If the race is masked and is canceled because both participants canceled, the fiber will block indefinitely.
Value parameters:
fa

the effect for the first racing fiber

fb

the effect for the second racing fiber

See also:

raceOutcome for a variant that returns the outcome of the winner.

Inherited from:
GenSpawn
def race[A, B](fa: F[A], fb: F[B]): F[Either[A, B]]

Races the evaluation of two fibers that returns the result of the winner, except in the case of cancelation.

Races the evaluation of two fibers that returns the result of the winner, except in the case of cancelation.

The semantics of race are described by the following rules:

  1. If the winner completes with Outcome.Succeeded, the race returns the successful value. The loser is canceled before returning. 2. If the winner completes with Outcome.Errored, the race raises the error. The loser is canceled before returning. 3. If the winner completes with Outcome.Canceled, the race returns the result of the loser, consistent with the first two rules. 4. If both the winner and loser complete with Outcome.Canceled, the race is canceled. 8. If the race is masked and is canceled because both participants canceled, the fiber will block indefinitely.
Value parameters:
fa

the effect for the first racing fiber

fb

the effect for the second racing fiber

See also:

raceOutcome for a variant that returns the outcome of the winner.

Inherited from:
GenSpawn
def raceOutcome[A, B](fa: F[A], fb: F[B]): F[Either[Outcome[F, E, A], Outcome[F, E, B]]]
Implicitly added by genConcurrentForEitherT

Races the evaluation of two fibers that returns the Outcome of the winner. The winner of the race is considered to be the first fiber that completes with an outcome. The loser of the race is canceled before returning.

Races the evaluation of two fibers that returns the Outcome of the winner. The winner of the race is considered to be the first fiber that completes with an outcome. The loser of the race is canceled before returning.

Value parameters:
fa

the effect for the first racing fiber

fb

the effect for the second racing fiber

See also:

race for a simpler variant that returns the successful outcome.

Inherited from:
GenSpawn
def raceOutcome[A, B](fa: F[A], fb: F[B]): F[Either[Outcome[F, E, A], Outcome[F, E, B]]]
Implicitly added by genConcurrentForKleisli

Races the evaluation of two fibers that returns the Outcome of the winner. The winner of the race is considered to be the first fiber that completes with an outcome. The loser of the race is canceled before returning.

Races the evaluation of two fibers that returns the Outcome of the winner. The winner of the race is considered to be the first fiber that completes with an outcome. The loser of the race is canceled before returning.

Value parameters:
fa

the effect for the first racing fiber

fb

the effect for the second racing fiber

See also:

race for a simpler variant that returns the successful outcome.

Inherited from:
GenSpawn
def raceOutcome[A, B](fa: F[A], fb: F[B]): F[Either[Outcome[F, E, A], Outcome[F, E, B]]]
Implicitly added by genConcurrentForOptionT

Races the evaluation of two fibers that returns the Outcome of the winner. The winner of the race is considered to be the first fiber that completes with an outcome. The loser of the race is canceled before returning.

Races the evaluation of two fibers that returns the Outcome of the winner. The winner of the race is considered to be the first fiber that completes with an outcome. The loser of the race is canceled before returning.

Value parameters:
fa

the effect for the first racing fiber

fb

the effect for the second racing fiber

See also:

race for a simpler variant that returns the successful outcome.

Inherited from:
GenSpawn
def raceOutcome[A, B](fa: F[A], fb: F[B]): F[Either[Outcome[F, E, A], Outcome[F, E, B]]]

Races the evaluation of two fibers that returns the Outcome of the winner. The winner of the race is considered to be the first fiber that completes with an outcome. The loser of the race is canceled before returning.

Races the evaluation of two fibers that returns the Outcome of the winner. The winner of the race is considered to be the first fiber that completes with an outcome. The loser of the race is canceled before returning.

Value parameters:
fa

the effect for the first racing fiber

fb

the effect for the second racing fiber

See also:

race for a simpler variant that returns the successful outcome.

Inherited from:
GenSpawn
def raiseError[A](e: E): F[A]
Implicitly added by genConcurrentForEitherT

Lift an error into the F context.

Lift an error into the F context.

Example:

scala> import cats.implicits._

// integer-rounded division
scala> def divide[F[_]](dividend: Int, divisor: Int)(implicit F: ApplicativeError[F, String]): F[Int] =
    | if (divisor === 0) F.raiseError("division by zero")
    | else F.pure(dividend / divisor)

scala> type ErrorOr[A] = Either[String, A]

scala> divide[ErrorOr](6, 3)
res0: ErrorOr[Int] = Right(2)

scala> divide[ErrorOr](6, 0)
res1: ErrorOr[Int] = Left(division by zero)
Inherited from:
ApplicativeError
def raiseError[A](e: E): F[A]
Implicitly added by genConcurrentForKleisli

Lift an error into the F context.

Lift an error into the F context.

Example:

scala> import cats.implicits._

// integer-rounded division
scala> def divide[F[_]](dividend: Int, divisor: Int)(implicit F: ApplicativeError[F, String]): F[Int] =
    | if (divisor === 0) F.raiseError("division by zero")
    | else F.pure(dividend / divisor)

scala> type ErrorOr[A] = Either[String, A]

scala> divide[ErrorOr](6, 3)
res0: ErrorOr[Int] = Right(2)

scala> divide[ErrorOr](6, 0)
res1: ErrorOr[Int] = Left(division by zero)
Inherited from:
ApplicativeError
def raiseError[A](e: E): F[A]
Implicitly added by genConcurrentForOptionT

Lift an error into the F context.

Lift an error into the F context.

Example:

scala> import cats.implicits._

// integer-rounded division
scala> def divide[F[_]](dividend: Int, divisor: Int)(implicit F: ApplicativeError[F, String]): F[Int] =
    | if (divisor === 0) F.raiseError("division by zero")
    | else F.pure(dividend / divisor)

scala> type ErrorOr[A] = Either[String, A]

scala> divide[ErrorOr](6, 3)
res0: ErrorOr[Int] = Right(2)

scala> divide[ErrorOr](6, 0)
res1: ErrorOr[Int] = Left(division by zero)
Inherited from:
ApplicativeError
def raiseError[A](e: E): F[A]

Lift an error into the F context.

Lift an error into the F context.

Example:

scala> import cats.implicits._

// integer-rounded division
scala> def divide[F[_]](dividend: Int, divisor: Int)(implicit F: ApplicativeError[F, String]): F[Int] =
    | if (divisor === 0) F.raiseError("division by zero")
    | else F.pure(dividend / divisor)

scala> type ErrorOr[A] = Either[String, A]

scala> divide[ErrorOr](6, 3)
res0: ErrorOr[Int] = Right(2)

scala> divide[ErrorOr](6, 0)
res1: ErrorOr[Int] = Left(division by zero)
Inherited from:
ApplicativeError
def raiseUnless(cond: Boolean)(e: => E): F[Unit]
Implicitly added by genConcurrentForEitherT

Returns raiseError when cond is false, otherwise F.unit

Returns raiseError when cond is false, otherwise F.unit

Example:
val tooMany = 5
val x: Int = ???
F.raiseUnless(x < tooMany)(new IllegalArgumentException("Too many"))
Inherited from:
ApplicativeError
def raiseUnless(cond: Boolean)(e: => E): F[Unit]
Implicitly added by genConcurrentForKleisli

Returns raiseError when cond is false, otherwise F.unit

Returns raiseError when cond is false, otherwise F.unit

Example:
val tooMany = 5
val x: Int = ???
F.raiseUnless(x < tooMany)(new IllegalArgumentException("Too many"))
Inherited from:
ApplicativeError
def raiseUnless(cond: Boolean)(e: => E): F[Unit]
Implicitly added by genConcurrentForOptionT

Returns raiseError when cond is false, otherwise F.unit

Returns raiseError when cond is false, otherwise F.unit

Example:
val tooMany = 5
val x: Int = ???
F.raiseUnless(x < tooMany)(new IllegalArgumentException("Too many"))
Inherited from:
ApplicativeError
def raiseUnless(cond: Boolean)(e: => E): F[Unit]

Returns raiseError when cond is false, otherwise F.unit

Returns raiseError when cond is false, otherwise F.unit

Example:
val tooMany = 5
val x: Int = ???
F.raiseUnless(x < tooMany)(new IllegalArgumentException("Too many"))
Inherited from:
ApplicativeError
def raiseWhen(cond: Boolean)(e: => E): F[Unit]
Implicitly added by genConcurrentForEitherT

Returns raiseError when the cond is true, otherwise F.unit

Returns raiseError when the cond is true, otherwise F.unit

Example:
val tooMany = 5
val x: Int = ???
F.raiseWhen(x >= tooMany)(new IllegalArgumentException("Too many"))
Inherited from:
ApplicativeError
def raiseWhen(cond: Boolean)(e: => E): F[Unit]
Implicitly added by genConcurrentForKleisli

Returns raiseError when the cond is true, otherwise F.unit

Returns raiseError when the cond is true, otherwise F.unit

Example:
val tooMany = 5
val x: Int = ???
F.raiseWhen(x >= tooMany)(new IllegalArgumentException("Too many"))
Inherited from:
ApplicativeError
def raiseWhen(cond: Boolean)(e: => E): F[Unit]
Implicitly added by genConcurrentForOptionT

Returns raiseError when the cond is true, otherwise F.unit

Returns raiseError when the cond is true, otherwise F.unit

Example:
val tooMany = 5
val x: Int = ???
F.raiseWhen(x >= tooMany)(new IllegalArgumentException("Too many"))
Inherited from:
ApplicativeError
def raiseWhen(cond: Boolean)(e: => E): F[Unit]

Returns raiseError when the cond is true, otherwise F.unit

Returns raiseError when the cond is true, otherwise F.unit

Example:
val tooMany = 5
val x: Int = ???
F.raiseWhen(x >= tooMany)(new IllegalArgumentException("Too many"))
Inherited from:
ApplicativeError
def recover[A](fa: F[A])(pf: PartialFunction[E, A]): F[A]
Implicitly added by genConcurrentForEitherT

Recover from certain errors by mapping them to an A value.

Recover from certain errors by mapping them to an A value.

See also:

handleError to handle any/all errors.

recoverWith to recover from certain errors by mapping them to F[A] values.

Inherited from:
ApplicativeError
def recover[A](fa: F[A])(pf: PartialFunction[E, A]): F[A]
Implicitly added by genConcurrentForKleisli

Recover from certain errors by mapping them to an A value.

Recover from certain errors by mapping them to an A value.

See also:

handleError to handle any/all errors.

recoverWith to recover from certain errors by mapping them to F[A] values.

Inherited from:
ApplicativeError
def recover[A](fa: F[A])(pf: PartialFunction[E, A]): F[A]
Implicitly added by genConcurrentForOptionT

Recover from certain errors by mapping them to an A value.

Recover from certain errors by mapping them to an A value.

See also:

handleError to handle any/all errors.

recoverWith to recover from certain errors by mapping them to F[A] values.

Inherited from:
ApplicativeError
def recover[A](fa: F[A])(pf: PartialFunction[E, A]): F[A]

Recover from certain errors by mapping them to an A value.

Recover from certain errors by mapping them to an A value.

See also:

handleError to handle any/all errors.

recoverWith to recover from certain errors by mapping them to F[A] values.

Inherited from:
ApplicativeError
def recoverWith[A](fa: F[A])(pf: PartialFunction[E, F[A]]): F[A]
Implicitly added by genConcurrentForEitherT

Recover from certain errors by mapping them to an F[A] value.

Recover from certain errors by mapping them to an F[A] value.

See also:

handleErrorWith to handle any/all errors.

recover to recover from certain errors by mapping them to A values.

Inherited from:
ApplicativeError
def recoverWith[A](fa: F[A])(pf: PartialFunction[E, F[A]]): F[A]
Implicitly added by genConcurrentForKleisli

Recover from certain errors by mapping them to an F[A] value.

Recover from certain errors by mapping them to an F[A] value.

See also:

handleErrorWith to handle any/all errors.

recover to recover from certain errors by mapping them to A values.

Inherited from:
ApplicativeError
def recoverWith[A](fa: F[A])(pf: PartialFunction[E, F[A]]): F[A]
Implicitly added by genConcurrentForOptionT

Recover from certain errors by mapping them to an F[A] value.

Recover from certain errors by mapping them to an F[A] value.

See also:

handleErrorWith to handle any/all errors.

recover to recover from certain errors by mapping them to A values.

Inherited from:
ApplicativeError
def recoverWith[A](fa: F[A])(pf: PartialFunction[E, F[A]]): F[A]

Recover from certain errors by mapping them to an F[A] value.

Recover from certain errors by mapping them to an F[A] value.

See also:

handleErrorWith to handle any/all errors.

recover to recover from certain errors by mapping them to A values.

Inherited from:
ApplicativeError
def redeem[A, B](fa: F[A])(recover: E => B, f: A => B): F[B]
Implicitly added by genConcurrentForEitherT

Returns a new value that transforms the result of the source, given the recover or map functions, which get executed depending on whether the result is successful or if it ends in error.

Returns a new value that transforms the result of the source, given the recover or map functions, which get executed depending on whether the result is successful or if it ends in error.

This is an optimization on usage of attempt and map, this equivalence being available:

 fa.redeem(fe, fs) <-> fa.attempt.map(_.fold(fe, fs))

Usage of redeem subsumes handleError because:

 fa.redeem(fe, id) <-> fa.handleError(fe)

Implementations are free to override it in order to optimize error recovery.

Value parameters:
fa

is the source whose result is going to get transformed

recover

is the function that gets called to recover the source in case of error

See also:
Inherited from:
ApplicativeError
def redeem[A, B](fa: F[A])(recover: E => B, f: A => B): F[B]
Implicitly added by genConcurrentForKleisli

Returns a new value that transforms the result of the source, given the recover or map functions, which get executed depending on whether the result is successful or if it ends in error.

Returns a new value that transforms the result of the source, given the recover or map functions, which get executed depending on whether the result is successful or if it ends in error.

This is an optimization on usage of attempt and map, this equivalence being available:

 fa.redeem(fe, fs) <-> fa.attempt.map(_.fold(fe, fs))

Usage of redeem subsumes handleError because:

 fa.redeem(fe, id) <-> fa.handleError(fe)

Implementations are free to override it in order to optimize error recovery.

Value parameters:
fa

is the source whose result is going to get transformed

recover

is the function that gets called to recover the source in case of error

See also:
Inherited from:
ApplicativeError
def redeem[A, B](fa: F[A])(recover: E => B, f: A => B): F[B]
Implicitly added by genConcurrentForOptionT

Returns a new value that transforms the result of the source, given the recover or map functions, which get executed depending on whether the result is successful or if it ends in error.

Returns a new value that transforms the result of the source, given the recover or map functions, which get executed depending on whether the result is successful or if it ends in error.

This is an optimization on usage of attempt and map, this equivalence being available:

 fa.redeem(fe, fs) <-> fa.attempt.map(_.fold(fe, fs))

Usage of redeem subsumes handleError because:

 fa.redeem(fe, id) <-> fa.handleError(fe)

Implementations are free to override it in order to optimize error recovery.

Value parameters:
fa

is the source whose result is going to get transformed

recover

is the function that gets called to recover the source in case of error

See also:
Inherited from:
ApplicativeError
def redeem[A, B](fa: F[A])(recover: E => B, f: A => B): F[B]

Returns a new value that transforms the result of the source, given the recover or map functions, which get executed depending on whether the result is successful or if it ends in error.

Returns a new value that transforms the result of the source, given the recover or map functions, which get executed depending on whether the result is successful or if it ends in error.

This is an optimization on usage of attempt and map, this equivalence being available:

 fa.redeem(fe, fs) <-> fa.attempt.map(_.fold(fe, fs))

Usage of redeem subsumes handleError because:

 fa.redeem(fe, id) <-> fa.handleError(fe)

Implementations are free to override it in order to optimize error recovery.

Value parameters:
fa

is the source whose result is going to get transformed

recover

is the function that gets called to recover the source in case of error

See also:
Inherited from:
ApplicativeError
def redeemWith[A, B](fa: F[A])(recover: E => F[B], bind: A => F[B]): F[B]
Implicitly added by genConcurrentForEitherT

Returns a new value that transforms the result of the source, given the recover or bind functions, which get executed depending on whether the result is successful or if it ends in error.

Returns a new value that transforms the result of the source, given the recover or bind functions, which get executed depending on whether the result is successful or if it ends in error.

This is an optimization on usage of attempt and flatMap, this equivalence being available:

 fa.redeemWith(fe, fs) <-> fa.attempt.flatMap(_.fold(fe, fs))

Usage of redeemWith subsumes handleErrorWith because:

 fa.redeemWith(fe, F.pure) <-> fa.handleErrorWith(fe)

Usage of redeemWith also subsumes flatMap because:

 fa.redeemWith(F.raiseError, fs) <-> fa.flatMap(fs)

Implementations are free to override it in order to optimize error recovery.

Value parameters:
bind

is the function that gets to transform the source in case of success

fa

is the source whose result is going to get transformed

recover

is the function that gets called to recover the source in case of error

See also:

redeem, attempt and handleErrorWith

Inherited from:
MonadError
def redeemWith[A, B](fa: F[A])(recover: E => F[B], bind: A => F[B]): F[B]
Implicitly added by genConcurrentForKleisli

Returns a new value that transforms the result of the source, given the recover or bind functions, which get executed depending on whether the result is successful or if it ends in error.

Returns a new value that transforms the result of the source, given the recover or bind functions, which get executed depending on whether the result is successful or if it ends in error.

This is an optimization on usage of attempt and flatMap, this equivalence being available:

 fa.redeemWith(fe, fs) <-> fa.attempt.flatMap(_.fold(fe, fs))

Usage of redeemWith subsumes handleErrorWith because:

 fa.redeemWith(fe, F.pure) <-> fa.handleErrorWith(fe)

Usage of redeemWith also subsumes flatMap because:

 fa.redeemWith(F.raiseError, fs) <-> fa.flatMap(fs)

Implementations are free to override it in order to optimize error recovery.

Value parameters:
bind

is the function that gets to transform the source in case of success

fa

is the source whose result is going to get transformed

recover

is the function that gets called to recover the source in case of error

See also:

redeem, attempt and handleErrorWith

Inherited from:
MonadError
def redeemWith[A, B](fa: F[A])(recover: E => F[B], bind: A => F[B]): F[B]
Implicitly added by genConcurrentForOptionT

Returns a new value that transforms the result of the source, given the recover or bind functions, which get executed depending on whether the result is successful or if it ends in error.

Returns a new value that transforms the result of the source, given the recover or bind functions, which get executed depending on whether the result is successful or if it ends in error.

This is an optimization on usage of attempt and flatMap, this equivalence being available:

 fa.redeemWith(fe, fs) <-> fa.attempt.flatMap(_.fold(fe, fs))

Usage of redeemWith subsumes handleErrorWith because:

 fa.redeemWith(fe, F.pure) <-> fa.handleErrorWith(fe)

Usage of redeemWith also subsumes flatMap because:

 fa.redeemWith(F.raiseError, fs) <-> fa.flatMap(fs)

Implementations are free to override it in order to optimize error recovery.

Value parameters:
bind

is the function that gets to transform the source in case of success

fa

is the source whose result is going to get transformed

recover

is the function that gets called to recover the source in case of error

See also:

redeem, attempt and handleErrorWith

Inherited from:
MonadError
def redeemWith[A, B](fa: F[A])(recover: E => F[B], bind: A => F[B]): F[B]

Returns a new value that transforms the result of the source, given the recover or bind functions, which get executed depending on whether the result is successful or if it ends in error.

Returns a new value that transforms the result of the source, given the recover or bind functions, which get executed depending on whether the result is successful or if it ends in error.

This is an optimization on usage of attempt and flatMap, this equivalence being available:

 fa.redeemWith(fe, fs) <-> fa.attempt.flatMap(_.fold(fe, fs))

Usage of redeemWith subsumes handleErrorWith because:

 fa.redeemWith(fe, F.pure) <-> fa.handleErrorWith(fe)

Usage of redeemWith also subsumes flatMap because:

 fa.redeemWith(F.raiseError, fs) <-> fa.flatMap(fs)

Implementations are free to override it in order to optimize error recovery.

Value parameters:
bind

is the function that gets to transform the source in case of success

fa

is the source whose result is going to get transformed

recover

is the function that gets called to recover the source in case of error

See also:

redeem, attempt and handleErrorWith

Inherited from:
MonadError
def replicateA[A](n: Int, fa: F[A]): F[List[A]]
Implicitly added by genConcurrentForEitherT

Given fa and n, apply fa n times to construct an F[List[A]] value.

Given fa and n, apply fa n times to construct an F[List[A]] value.

Example:

scala> import cats.data.State

scala> type Counter[A] = State[Int, A]
scala> val getAndIncrement: Counter[Int] = State { i => (i + 1, i) }
scala> val getAndIncrement5: Counter[List[Int]] =
    | Applicative[Counter].replicateA(5, getAndIncrement)
scala> getAndIncrement5.run(0).value
res0: (Int, List[Int]) = (5,List(0, 1, 2, 3, 4))
Inherited from:
Applicative
def replicateA[A](n: Int, fa: F[A]): F[List[A]]
Implicitly added by genConcurrentForKleisli

Given fa and n, apply fa n times to construct an F[List[A]] value.

Given fa and n, apply fa n times to construct an F[List[A]] value.

Example:

scala> import cats.data.State

scala> type Counter[A] = State[Int, A]
scala> val getAndIncrement: Counter[Int] = State { i => (i + 1, i) }
scala> val getAndIncrement5: Counter[List[Int]] =
    | Applicative[Counter].replicateA(5, getAndIncrement)
scala> getAndIncrement5.run(0).value
res0: (Int, List[Int]) = (5,List(0, 1, 2, 3, 4))
Inherited from:
Applicative
def replicateA[A](n: Int, fa: F[A]): F[List[A]]
Implicitly added by genConcurrentForOptionT

Given fa and n, apply fa n times to construct an F[List[A]] value.

Given fa and n, apply fa n times to construct an F[List[A]] value.

Example:

scala> import cats.data.State

scala> type Counter[A] = State[Int, A]
scala> val getAndIncrement: Counter[Int] = State { i => (i + 1, i) }
scala> val getAndIncrement5: Counter[List[Int]] =
    | Applicative[Counter].replicateA(5, getAndIncrement)
scala> getAndIncrement5.run(0).value
res0: (Int, List[Int]) = (5,List(0, 1, 2, 3, 4))
Inherited from:
Applicative
def replicateA[A](n: Int, fa: F[A]): F[List[A]]

Given fa and n, apply fa n times to construct an F[List[A]] value.

Given fa and n, apply fa n times to construct an F[List[A]] value.

Example:

scala> import cats.data.State

scala> type Counter[A] = State[Int, A]
scala> val getAndIncrement: Counter[Int] = State { i => (i + 1, i) }
scala> val getAndIncrement5: Counter[List[Int]] =
    | Applicative[Counter].replicateA(5, getAndIncrement)
scala> getAndIncrement5.run(0).value
res0: (Int, List[Int]) = (5,List(0, 1, 2, 3, 4))
Inherited from:
Applicative
def replicateA_[A](n: Int, fa: F[A]): F[Unit]
Implicitly added by genConcurrentForEitherT

Given fa and n, apply fa n times discarding results to return F[Unit].

Given fa and n, apply fa n times discarding results to return F[Unit].

Example:

scala> import cats.data.State

scala> type Counter[A] = State[Int, A]
scala> val getAndIncrement: Counter[Int] = State { i => (i + 1, i) }
scala> val getAndIncrement5: Counter[Unit] =
    | Applicative[Counter].replicateA_(5, getAndIncrement)
scala> getAndIncrement5.run(0).value
res0: (Int, Unit) = (5,())
Inherited from:
Applicative
def replicateA_[A](n: Int, fa: F[A]): F[Unit]
Implicitly added by genConcurrentForKleisli

Given fa and n, apply fa n times discarding results to return F[Unit].

Given fa and n, apply fa n times discarding results to return F[Unit].

Example:

scala> import cats.data.State

scala> type Counter[A] = State[Int, A]
scala> val getAndIncrement: Counter[Int] = State { i => (i + 1, i) }
scala> val getAndIncrement5: Counter[Unit] =
    | Applicative[Counter].replicateA_(5, getAndIncrement)
scala> getAndIncrement5.run(0).value
res0: (Int, Unit) = (5,())
Inherited from:
Applicative
def replicateA_[A](n: Int, fa: F[A]): F[Unit]
Implicitly added by genConcurrentForOptionT

Given fa and n, apply fa n times discarding results to return F[Unit].

Given fa and n, apply fa n times discarding results to return F[Unit].

Example:

scala> import cats.data.State

scala> type Counter[A] = State[Int, A]
scala> val getAndIncrement: Counter[Int] = State { i => (i + 1, i) }
scala> val getAndIncrement5: Counter[Unit] =
    | Applicative[Counter].replicateA_(5, getAndIncrement)
scala> getAndIncrement5.run(0).value
res0: (Int, Unit) = (5,())
Inherited from:
Applicative
def replicateA_[A](n: Int, fa: F[A]): F[Unit]

Given fa and n, apply fa n times discarding results to return F[Unit].

Given fa and n, apply fa n times discarding results to return F[Unit].

Example:

scala> import cats.data.State

scala> type Counter[A] = State[Int, A]
scala> val getAndIncrement: Counter[Int] = State { i => (i + 1, i) }
scala> val getAndIncrement5: Counter[Unit] =
    | Applicative[Counter].replicateA_(5, getAndIncrement)
scala> getAndIncrement5.run(0).value
res0: (Int, Unit) = (5,())
Inherited from:
Applicative
def rethrow[A, EE <: E](fa: F[Either[EE, A]]): F[A]
Implicitly added by genConcurrentForEitherT

Inverse of attempt

Inverse of attempt

Example:

scala> import cats.implicits._
scala> import scala.util.{Try, Success}

scala> val a: Try[Either[Throwable, Int]] = Success(Left(new java.lang.Exception))
scala> a.rethrow
res0: scala.util.Try[Int] = Failure(java.lang.Exception)

scala> val b: Try[Either[Throwable, Int]] = Success(Right(1))
scala> b.rethrow
res1: scala.util.Try[Int] = Success(1)
Inherited from:
MonadError
def rethrow[A, EE <: E](fa: F[Either[EE, A]]): F[A]
Implicitly added by genConcurrentForKleisli

Inverse of attempt

Inverse of attempt

Example:

scala> import cats.implicits._
scala> import scala.util.{Try, Success}

scala> val a: Try[Either[Throwable, Int]] = Success(Left(new java.lang.Exception))
scala> a.rethrow
res0: scala.util.Try[Int] = Failure(java.lang.Exception)

scala> val b: Try[Either[Throwable, Int]] = Success(Right(1))
scala> b.rethrow
res1: scala.util.Try[Int] = Success(1)
Inherited from:
MonadError
def rethrow[A, EE <: E](fa: F[Either[EE, A]]): F[A]
Implicitly added by genConcurrentForOptionT

Inverse of attempt

Inverse of attempt

Example:

scala> import cats.implicits._
scala> import scala.util.{Try, Success}

scala> val a: Try[Either[Throwable, Int]] = Success(Left(new java.lang.Exception))
scala> a.rethrow
res0: scala.util.Try[Int] = Failure(java.lang.Exception)

scala> val b: Try[Either[Throwable, Int]] = Success(Right(1))
scala> b.rethrow
res1: scala.util.Try[Int] = Success(1)
Inherited from:
MonadError
def rethrow[A, EE <: E](fa: F[Either[EE, A]]): F[A]

Inverse of attempt

Inverse of attempt

Example:

scala> import cats.implicits._
scala> import scala.util.{Try, Success}

scala> val a: Try[Either[Throwable, Int]] = Success(Left(new java.lang.Exception))
scala> a.rethrow
res0: scala.util.Try[Int] = Failure(java.lang.Exception)

scala> val b: Try[Either[Throwable, Int]] = Success(Right(1))
scala> b.rethrow
res1: scala.util.Try[Int] = Success(1)
Inherited from:
MonadError
Implicitly added by genConcurrentForEitherT
Inherited from:
GenSpawn
Implicitly added by genConcurrentForKleisli
Inherited from:
GenSpawn
Implicitly added by genConcurrentForOptionT
Inherited from:
GenSpawn
Inherited from:
GenSpawn
def start[A](fa: F[A]): F[Fiber[F, E, A]]
Implicitly added by genConcurrentForEitherT

A low-level primitive for starting the concurrent evaluation of a fiber. Returns a Fiber that can be used to wait for a fiber or cancel it.

A low-level primitive for starting the concurrent evaluation of a fiber. Returns a Fiber that can be used to wait for a fiber or cancel it.

start is a cancelation-unsafe function; it is recommended to use the safer variant, background, to spawn fibers.

Value parameters:
fa

the effect for the fiber

See also:

background for the safer, recommended variant

Inherited from:
GenSpawn
def start[A](fa: F[A]): F[Fiber[F, E, A]]
Implicitly added by genConcurrentForKleisli

A low-level primitive for starting the concurrent evaluation of a fiber. Returns a Fiber that can be used to wait for a fiber or cancel it.

A low-level primitive for starting the concurrent evaluation of a fiber. Returns a Fiber that can be used to wait for a fiber or cancel it.

start is a cancelation-unsafe function; it is recommended to use the safer variant, background, to spawn fibers.

Value parameters:
fa

the effect for the fiber

See also:

background for the safer, recommended variant

Inherited from:
GenSpawn
def start[A](fa: F[A]): F[Fiber[F, E, A]]
Implicitly added by genConcurrentForOptionT

A low-level primitive for starting the concurrent evaluation of a fiber. Returns a Fiber that can be used to wait for a fiber or cancel it.

A low-level primitive for starting the concurrent evaluation of a fiber. Returns a Fiber that can be used to wait for a fiber or cancel it.

start is a cancelation-unsafe function; it is recommended to use the safer variant, background, to spawn fibers.

Value parameters:
fa

the effect for the fiber

See also:

background for the safer, recommended variant

Inherited from:
GenSpawn
def start[A](fa: F[A]): F[Fiber[F, E, A]]

A low-level primitive for starting the concurrent evaluation of a fiber. Returns a Fiber that can be used to wait for a fiber or cancel it.

A low-level primitive for starting the concurrent evaluation of a fiber. Returns a Fiber that can be used to wait for a fiber or cancel it.

start is a cancelation-unsafe function; it is recommended to use the safer variant, background, to spawn fibers.

Value parameters:
fa

the effect for the fiber

See also:

background for the safer, recommended variant

Inherited from:
GenSpawn
def tailRecM[A, B](a: A)(f: A => F[Either[A, B]]): F[B]
Implicitly added by genConcurrentForEitherT

Keeps calling f until a scala.util.Right[B] is returned.

Keeps calling f until a scala.util.Right[B] is returned.

Based on Phil Freeman's Stack Safety for Free.

Implementations of this method should use constant stack space relative to f.

Inherited from:
FlatMap
def tailRecM[A, B](a: A)(f: A => F[Either[A, B]]): F[B]
Implicitly added by genConcurrentForKleisli

Keeps calling f until a scala.util.Right[B] is returned.

Keeps calling f until a scala.util.Right[B] is returned.

Based on Phil Freeman's Stack Safety for Free.

Implementations of this method should use constant stack space relative to f.

Inherited from:
FlatMap
def tailRecM[A, B](a: A)(f: A => F[Either[A, B]]): F[B]
Implicitly added by genConcurrentForOptionT

Keeps calling f until a scala.util.Right[B] is returned.

Keeps calling f until a scala.util.Right[B] is returned.

Based on Phil Freeman's Stack Safety for Free.

Implementations of this method should use constant stack space relative to f.

Inherited from:
FlatMap
def tailRecM[A, B](a: A)(f: A => F[Either[A, B]]): F[B]

Keeps calling f until a scala.util.Right[B] is returned.

Keeps calling f until a scala.util.Right[B] is returned.

Based on Phil Freeman's Stack Safety for Free.

Implementations of this method should use constant stack space relative to f.

Inherited from:
FlatMap
def tuple10[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9)]
Implicitly added by genConcurrentForEitherT
Inherited from:
ApplyArityFunctions
def tuple10[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9)]
Implicitly added by genConcurrentForKleisli
Inherited from:
ApplyArityFunctions
def tuple10[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9)]
Implicitly added by genConcurrentForOptionT
Inherited from:
ApplyArityFunctions
def tuple10[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9)]
Inherited from:
ApplyArityFunctions
def tuple11[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10)]
Implicitly added by genConcurrentForEitherT
Inherited from:
ApplyArityFunctions
def tuple11[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10)]
Implicitly added by genConcurrentForKleisli
Inherited from:
ApplyArityFunctions
def tuple11[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10)]
Implicitly added by genConcurrentForOptionT
Inherited from:
ApplyArityFunctions
def tuple11[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10)]
Inherited from:
ApplyArityFunctions
def tuple12[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11)]
Implicitly added by genConcurrentForEitherT
Inherited from:
ApplyArityFunctions
def tuple12[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11)]
Implicitly added by genConcurrentForKleisli
Inherited from:
ApplyArityFunctions
def tuple12[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11)]
Implicitly added by genConcurrentForOptionT
Inherited from:
ApplyArityFunctions
def tuple12[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11)]
Inherited from:
ApplyArityFunctions
def tuple13[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12)]
Implicitly added by genConcurrentForEitherT
Inherited from:
ApplyArityFunctions
def tuple13[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12)]
Implicitly added by genConcurrentForKleisli
Inherited from:
ApplyArityFunctions
def tuple13[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12)]
Implicitly added by genConcurrentForOptionT
Inherited from:
ApplyArityFunctions
def tuple13[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12)]
Inherited from:
ApplyArityFunctions
def tuple14[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13)]
Implicitly added by genConcurrentForEitherT
Inherited from:
ApplyArityFunctions
def tuple14[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13)]
Implicitly added by genConcurrentForKleisli
Inherited from:
ApplyArityFunctions
def tuple14[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13)]
Implicitly added by genConcurrentForOptionT
Inherited from:
ApplyArityFunctions
def tuple14[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13)]
Inherited from:
ApplyArityFunctions
def tuple15[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14)]
Implicitly added by genConcurrentForEitherT
Inherited from:
ApplyArityFunctions
def tuple15[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14)]
Implicitly added by genConcurrentForKleisli
Inherited from:
ApplyArityFunctions
def tuple15[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14)]
Implicitly added by genConcurrentForOptionT
Inherited from:
ApplyArityFunctions
def tuple15[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14)]
Inherited from:
ApplyArityFunctions
def tuple16[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15)]
Implicitly added by genConcurrentForEitherT
Inherited from:
ApplyArityFunctions
def tuple16[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15)]
Implicitly added by genConcurrentForKleisli
Inherited from:
ApplyArityFunctions
def tuple16[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15)]
Implicitly added by genConcurrentForOptionT
Inherited from:
ApplyArityFunctions
def tuple16[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15)]
Inherited from:
ApplyArityFunctions
def tuple17[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16)]
Implicitly added by genConcurrentForEitherT
Inherited from:
ApplyArityFunctions
def tuple17[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16)]
Implicitly added by genConcurrentForKleisli
Inherited from:
ApplyArityFunctions
def tuple17[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16)]
Implicitly added by genConcurrentForOptionT
Inherited from:
ApplyArityFunctions
def tuple17[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16)]
Inherited from:
ApplyArityFunctions
def tuple18[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17)]
Implicitly added by genConcurrentForEitherT
Inherited from:
ApplyArityFunctions
def tuple18[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17)]
Implicitly added by genConcurrentForKleisli
Inherited from:
ApplyArityFunctions
def tuple18[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17)]
Implicitly added by genConcurrentForOptionT
Inherited from:
ApplyArityFunctions
def tuple18[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17)]
Inherited from:
ApplyArityFunctions
def tuple19[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18)]
Implicitly added by genConcurrentForEitherT
Inherited from:
ApplyArityFunctions
def tuple19[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18)]
Implicitly added by genConcurrentForKleisli
Inherited from:
ApplyArityFunctions
def tuple19[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18)]
Implicitly added by genConcurrentForOptionT
Inherited from:
ApplyArityFunctions
def tuple19[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18)]
Inherited from:
ApplyArityFunctions
def tuple2[A, B](f1: F[A], f2: F[B]): F[(A, B)]
Implicitly added by genConcurrentForEitherT
Inherited from:
ApplyArityFunctions
def tuple2[A, B](f1: F[A], f2: F[B]): F[(A, B)]
Implicitly added by genConcurrentForKleisli
Inherited from:
ApplyArityFunctions
def tuple2[A, B](f1: F[A], f2: F[B]): F[(A, B)]
Implicitly added by genConcurrentForOptionT
Inherited from:
ApplyArityFunctions
def tuple2[A, B](f1: F[A], f2: F[B]): F[(A, B)]
Inherited from:
ApplyArityFunctions
def tuple20[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19)]
Implicitly added by genConcurrentForEitherT
Inherited from:
ApplyArityFunctions
def tuple20[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19)]
Implicitly added by genConcurrentForKleisli
Inherited from:
ApplyArityFunctions
def tuple20[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19)]
Implicitly added by genConcurrentForOptionT
Inherited from:
ApplyArityFunctions
def tuple20[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19)]
Inherited from:
ApplyArityFunctions
def tuple21[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19], f20: F[A20]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20)]
Implicitly added by genConcurrentForEitherT
Inherited from:
ApplyArityFunctions
def tuple21[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19], f20: F[A20]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20)]
Implicitly added by genConcurrentForKleisli
Inherited from:
ApplyArityFunctions
def tuple21[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19], f20: F[A20]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20)]
Implicitly added by genConcurrentForOptionT
Inherited from:
ApplyArityFunctions
def tuple21[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19], f20: F[A20]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20)]
Inherited from:
ApplyArityFunctions
def tuple22[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, A21](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19], f20: F[A20], f21: F[A21]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, A21)]
Implicitly added by genConcurrentForEitherT
Inherited from:
ApplyArityFunctions
def tuple22[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, A21](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19], f20: F[A20], f21: F[A21]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, A21)]
Implicitly added by genConcurrentForKleisli
Inherited from:
ApplyArityFunctions
def tuple22[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, A21](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19], f20: F[A20], f21: F[A21]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, A21)]
Implicitly added by genConcurrentForOptionT
Inherited from:
ApplyArityFunctions
def tuple22[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, A21](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19], f20: F[A20], f21: F[A21]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, A21)]
Inherited from:
ApplyArityFunctions
def tuple3[A0, A1, A2](f0: F[A0], f1: F[A1], f2: F[A2]): F[(A0, A1, A2)]
Implicitly added by genConcurrentForEitherT
Inherited from:
ApplyArityFunctions
def tuple3[A0, A1, A2](f0: F[A0], f1: F[A1], f2: F[A2]): F[(A0, A1, A2)]
Implicitly added by genConcurrentForKleisli
Inherited from:
ApplyArityFunctions
def tuple3[A0, A1, A2](f0: F[A0], f1: F[A1], f2: F[A2]): F[(A0, A1, A2)]
Implicitly added by genConcurrentForOptionT
Inherited from:
ApplyArityFunctions
def tuple3[A0, A1, A2](f0: F[A0], f1: F[A1], f2: F[A2]): F[(A0, A1, A2)]
Inherited from:
ApplyArityFunctions
def tuple4[A0, A1, A2, A3](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3]): F[(A0, A1, A2, A3)]
Implicitly added by genConcurrentForEitherT
Inherited from:
ApplyArityFunctions
def tuple4[A0, A1, A2, A3](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3]): F[(A0, A1, A2, A3)]
Implicitly added by genConcurrentForKleisli
Inherited from:
ApplyArityFunctions
def tuple4[A0, A1, A2, A3](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3]): F[(A0, A1, A2, A3)]
Implicitly added by genConcurrentForOptionT
Inherited from:
ApplyArityFunctions
def tuple4[A0, A1, A2, A3](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3]): F[(A0, A1, A2, A3)]
Inherited from:
ApplyArityFunctions
def tuple5[A0, A1, A2, A3, A4](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4]): F[(A0, A1, A2, A3, A4)]
Implicitly added by genConcurrentForEitherT
Inherited from:
ApplyArityFunctions
def tuple5[A0, A1, A2, A3, A4](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4]): F[(A0, A1, A2, A3, A4)]
Implicitly added by genConcurrentForKleisli
Inherited from:
ApplyArityFunctions
def tuple5[A0, A1, A2, A3, A4](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4]): F[(A0, A1, A2, A3, A4)]
Implicitly added by genConcurrentForOptionT
Inherited from:
ApplyArityFunctions
def tuple5[A0, A1, A2, A3, A4](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4]): F[(A0, A1, A2, A3, A4)]
Inherited from:
ApplyArityFunctions
def tuple6[A0, A1, A2, A3, A4, A5](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5]): F[(A0, A1, A2, A3, A4, A5)]
Implicitly added by genConcurrentForEitherT
Inherited from:
ApplyArityFunctions
def tuple6[A0, A1, A2, A3, A4, A5](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5]): F[(A0, A1, A2, A3, A4, A5)]
Implicitly added by genConcurrentForKleisli
Inherited from:
ApplyArityFunctions
def tuple6[A0, A1, A2, A3, A4, A5](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5]): F[(A0, A1, A2, A3, A4, A5)]
Implicitly added by genConcurrentForOptionT
Inherited from:
ApplyArityFunctions
def tuple6[A0, A1, A2, A3, A4, A5](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5]): F[(A0, A1, A2, A3, A4, A5)]
Inherited from:
ApplyArityFunctions
def tuple7[A0, A1, A2, A3, A4, A5, A6](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6]): F[(A0, A1, A2, A3, A4, A5, A6)]
Implicitly added by genConcurrentForEitherT
Inherited from:
ApplyArityFunctions
def tuple7[A0, A1, A2, A3, A4, A5, A6](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6]): F[(A0, A1, A2, A3, A4, A5, A6)]
Implicitly added by genConcurrentForKleisli
Inherited from:
ApplyArityFunctions
def tuple7[A0, A1, A2, A3, A4, A5, A6](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6]): F[(A0, A1, A2, A3, A4, A5, A6)]
Implicitly added by genConcurrentForOptionT
Inherited from:
ApplyArityFunctions
def tuple7[A0, A1, A2, A3, A4, A5, A6](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6]): F[(A0, A1, A2, A3, A4, A5, A6)]
Inherited from:
ApplyArityFunctions
def tuple8[A0, A1, A2, A3, A4, A5, A6, A7](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7]): F[(A0, A1, A2, A3, A4, A5, A6, A7)]
Implicitly added by genConcurrentForEitherT
Inherited from:
ApplyArityFunctions
def tuple8[A0, A1, A2, A3, A4, A5, A6, A7](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7]): F[(A0, A1, A2, A3, A4, A5, A6, A7)]
Implicitly added by genConcurrentForKleisli
Inherited from:
ApplyArityFunctions
def tuple8[A0, A1, A2, A3, A4, A5, A6, A7](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7]): F[(A0, A1, A2, A3, A4, A5, A6, A7)]
Implicitly added by genConcurrentForOptionT
Inherited from:
ApplyArityFunctions
def tuple8[A0, A1, A2, A3, A4, A5, A6, A7](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7]): F[(A0, A1, A2, A3, A4, A5, A6, A7)]
Inherited from:
ApplyArityFunctions
def tuple9[A0, A1, A2, A3, A4, A5, A6, A7, A8](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8)]
Implicitly added by genConcurrentForEitherT
Inherited from:
ApplyArityFunctions
def tuple9[A0, A1, A2, A3, A4, A5, A6, A7, A8](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8)]
Implicitly added by genConcurrentForKleisli
Inherited from:
ApplyArityFunctions
def tuple9[A0, A1, A2, A3, A4, A5, A6, A7, A8](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8)]
Implicitly added by genConcurrentForOptionT
Inherited from:
ApplyArityFunctions
def tuple9[A0, A1, A2, A3, A4, A5, A6, A7, A8](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8)]
Inherited from:
ApplyArityFunctions
def tupleLeft[A, B](fa: F[A], b: B): F[(B, A)]
Implicitly added by genConcurrentForEitherT

Tuples the A value in F[A] with the supplied B value, with the B value on the left.

Tuples the A value in F[A] with the supplied B value, with the B value on the left.

Example:

scala> import scala.collection.immutable.Queue
scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForQueue

scala> Functor[Queue].tupleLeft(Queue("hello", "world"), 42)
res0: scala.collection.immutable.Queue[(Int, String)] = Queue((42,hello), (42,world))
Inherited from:
Functor
def tupleLeft[A, B](fa: F[A], b: B): F[(B, A)]
Implicitly added by genConcurrentForKleisli

Tuples the A value in F[A] with the supplied B value, with the B value on the left.

Tuples the A value in F[A] with the supplied B value, with the B value on the left.

Example:

scala> import scala.collection.immutable.Queue
scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForQueue

scala> Functor[Queue].tupleLeft(Queue("hello", "world"), 42)
res0: scala.collection.immutable.Queue[(Int, String)] = Queue((42,hello), (42,world))
Inherited from:
Functor
def tupleLeft[A, B](fa: F[A], b: B): F[(B, A)]
Implicitly added by genConcurrentForOptionT

Tuples the A value in F[A] with the supplied B value, with the B value on the left.

Tuples the A value in F[A] with the supplied B value, with the B value on the left.

Example:

scala> import scala.collection.immutable.Queue
scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForQueue

scala> Functor[Queue].tupleLeft(Queue("hello", "world"), 42)
res0: scala.collection.immutable.Queue[(Int, String)] = Queue((42,hello), (42,world))
Inherited from:
Functor
def tupleLeft[A, B](fa: F[A], b: B): F[(B, A)]

Tuples the A value in F[A] with the supplied B value, with the B value on the left.

Tuples the A value in F[A] with the supplied B value, with the B value on the left.

Example:

scala> import scala.collection.immutable.Queue
scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForQueue

scala> Functor[Queue].tupleLeft(Queue("hello", "world"), 42)
res0: scala.collection.immutable.Queue[(Int, String)] = Queue((42,hello), (42,world))
Inherited from:
Functor
def tupleRight[A, B](fa: F[A], b: B): F[(A, B)]
Implicitly added by genConcurrentForEitherT

Tuples the A value in F[A] with the supplied B value, with the B value on the right.

Tuples the A value in F[A] with the supplied B value, with the B value on the right.

Example:

scala> import scala.collection.immutable.Queue
scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForQueue

scala> Functor[Queue].tupleRight(Queue("hello", "world"), 42)
res0: scala.collection.immutable.Queue[(String, Int)] = Queue((hello,42), (world,42))
Inherited from:
Functor
def tupleRight[A, B](fa: F[A], b: B): F[(A, B)]
Implicitly added by genConcurrentForKleisli

Tuples the A value in F[A] with the supplied B value, with the B value on the right.

Tuples the A value in F[A] with the supplied B value, with the B value on the right.

Example:

scala> import scala.collection.immutable.Queue
scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForQueue

scala> Functor[Queue].tupleRight(Queue("hello", "world"), 42)
res0: scala.collection.immutable.Queue[(String, Int)] = Queue((hello,42), (world,42))
Inherited from:
Functor
def tupleRight[A, B](fa: F[A], b: B): F[(A, B)]
Implicitly added by genConcurrentForOptionT

Tuples the A value in F[A] with the supplied B value, with the B value on the right.

Tuples the A value in F[A] with the supplied B value, with the B value on the right.

Example:

scala> import scala.collection.immutable.Queue
scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForQueue

scala> Functor[Queue].tupleRight(Queue("hello", "world"), 42)
res0: scala.collection.immutable.Queue[(String, Int)] = Queue((hello,42), (world,42))
Inherited from:
Functor
def tupleRight[A, B](fa: F[A], b: B): F[(A, B)]

Tuples the A value in F[A] with the supplied B value, with the B value on the right.

Tuples the A value in F[A] with the supplied B value, with the B value on the right.

Example:

scala> import scala.collection.immutable.Queue
scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForQueue

scala> Functor[Queue].tupleRight(Queue("hello", "world"), 42)
res0: scala.collection.immutable.Queue[(String, Int)] = Queue((hello,42), (world,42))
Inherited from:
Functor
def uncancelable[A](body: Poll[F] => F[A]): F[A]
Implicitly added by genConcurrentForEitherT

Masks cancelation on the current fiber. The argument to body of type Poll[F] is a natural transformation F ~> F that enables polling. Polling causes a fiber to unmask within a masked region so that cancelation can be observed again.

Masks cancelation on the current fiber. The argument to body of type Poll[F] is a natural transformation F ~> F that enables polling. Polling causes a fiber to unmask within a masked region so that cancelation can be observed again.

In the following example, cancelation can be observed only within fb and nowhere else:


 F.uncancelable { poll =>
   fa *> poll(fb) *> fc
 }

If a fiber is canceled while it is masked, the cancelation is suppressed for as long as the fiber remains masked. Whenever the fiber is completely unmasked again, the cancelation will be respected.

Masks can also be stacked or nested within each other. If multiple masks are active, all masks must be undone so that cancelation can be observed. In order to completely unmask within a multi-masked region the poll corresponding to each mask must be applied to the effect, outermost-first.


 F.uncancelable { p1 =>
   F.uncancelable { p2 =>
     fa *> p2(p1(fb)) *> fc
   }
 }

The following operations are no-ops:

  1. Polling in the wrong order
  2. Subsequent polls when applying the same poll more than once: poll(poll(fa)) is equivalent to poll(fa)
  3. Applying a poll bound to one fiber within another fiber
Value parameters:
body

A function which takes a Poll and returns the effect that we wish to make uncancelable.

Inherited from:
MonadCancel
def uncancelable[A](body: Poll[F] => F[A]): F[A]
Implicitly added by genConcurrentForKleisli

Masks cancelation on the current fiber. The argument to body of type Poll[F] is a natural transformation F ~> F that enables polling. Polling causes a fiber to unmask within a masked region so that cancelation can be observed again.

Masks cancelation on the current fiber. The argument to body of type Poll[F] is a natural transformation F ~> F that enables polling. Polling causes a fiber to unmask within a masked region so that cancelation can be observed again.

In the following example, cancelation can be observed only within fb and nowhere else:


 F.uncancelable { poll =>
   fa *> poll(fb) *> fc
 }

If a fiber is canceled while it is masked, the cancelation is suppressed for as long as the fiber remains masked. Whenever the fiber is completely unmasked again, the cancelation will be respected.

Masks can also be stacked or nested within each other. If multiple masks are active, all masks must be undone so that cancelation can be observed. In order to completely unmask within a multi-masked region the poll corresponding to each mask must be applied to the effect, outermost-first.


 F.uncancelable { p1 =>
   F.uncancelable { p2 =>
     fa *> p2(p1(fb)) *> fc
   }
 }

The following operations are no-ops:

  1. Polling in the wrong order
  2. Subsequent polls when applying the same poll more than once: poll(poll(fa)) is equivalent to poll(fa)
  3. Applying a poll bound to one fiber within another fiber
Value parameters:
body

A function which takes a Poll and returns the effect that we wish to make uncancelable.

Inherited from:
MonadCancel
def uncancelable[A](body: Poll[F] => F[A]): F[A]
Implicitly added by genConcurrentForOptionT

Masks cancelation on the current fiber. The argument to body of type Poll[F] is a natural transformation F ~> F that enables polling. Polling causes a fiber to unmask within a masked region so that cancelation can be observed again.

Masks cancelation on the current fiber. The argument to body of type Poll[F] is a natural transformation F ~> F that enables polling. Polling causes a fiber to unmask within a masked region so that cancelation can be observed again.

In the following example, cancelation can be observed only within fb and nowhere else:


 F.uncancelable { poll =>
   fa *> poll(fb) *> fc
 }

If a fiber is canceled while it is masked, the cancelation is suppressed for as long as the fiber remains masked. Whenever the fiber is completely unmasked again, the cancelation will be respected.

Masks can also be stacked or nested within each other. If multiple masks are active, all masks must be undone so that cancelation can be observed. In order to completely unmask within a multi-masked region the poll corresponding to each mask must be applied to the effect, outermost-first.


 F.uncancelable { p1 =>
   F.uncancelable { p2 =>
     fa *> p2(p1(fb)) *> fc
   }
 }

The following operations are no-ops:

  1. Polling in the wrong order
  2. Subsequent polls when applying the same poll more than once: poll(poll(fa)) is equivalent to poll(fa)
  3. Applying a poll bound to one fiber within another fiber
Value parameters:
body

A function which takes a Poll and returns the effect that we wish to make uncancelable.

Inherited from:
MonadCancel
def uncancelable[A](body: Poll[F] => F[A]): F[A]

Masks cancelation on the current fiber. The argument to body of type Poll[F] is a natural transformation F ~> F that enables polling. Polling causes a fiber to unmask within a masked region so that cancelation can be observed again.

Masks cancelation on the current fiber. The argument to body of type Poll[F] is a natural transformation F ~> F that enables polling. Polling causes a fiber to unmask within a masked region so that cancelation can be observed again.

In the following example, cancelation can be observed only within fb and nowhere else:


 F.uncancelable { poll =>
   fa *> poll(fb) *> fc
 }

If a fiber is canceled while it is masked, the cancelation is suppressed for as long as the fiber remains masked. Whenever the fiber is completely unmasked again, the cancelation will be respected.

Masks can also be stacked or nested within each other. If multiple masks are active, all masks must be undone so that cancelation can be observed. In order to completely unmask within a multi-masked region the poll corresponding to each mask must be applied to the effect, outermost-first.


 F.uncancelable { p1 =>
   F.uncancelable { p2 =>
     fa *> p2(p1(fb)) *> fc
   }
 }

The following operations are no-ops:

  1. Polling in the wrong order
  2. Subsequent polls when applying the same poll more than once: poll(poll(fa)) is equivalent to poll(fa)
  3. Applying a poll bound to one fiber within another fiber
Value parameters:
body

A function which takes a Poll and returns the effect that we wish to make uncancelable.

Inherited from:
MonadCancel
def unique: F[Token]
Implicitly added by genConcurrentForEitherT
Inherited from:
Unique
def unique: F[Token]
Implicitly added by genConcurrentForKleisli
Inherited from:
Unique
def unique: F[Token]
Implicitly added by genConcurrentForOptionT
Inherited from:
Unique
def unique: F[Token]
Inherited from:
Unique
def unit: F[Unit]
Implicitly added by genConcurrentForEitherT

Returns an F[Unit] value, equivalent with pure(()).

Returns an F[Unit] value, equivalent with pure(()).

A useful shorthand, also allowing implementations to optimize the returned reference (e.g. it can be a val).

Example:

scala> import cats.implicits._

scala> Applicative[Option].unit
res0: Option[Unit] = Some(())
Inherited from:
Applicative
def unit: F[Unit]
Implicitly added by genConcurrentForKleisli

Returns an F[Unit] value, equivalent with pure(()).

Returns an F[Unit] value, equivalent with pure(()).

A useful shorthand, also allowing implementations to optimize the returned reference (e.g. it can be a val).

Example:

scala> import cats.implicits._

scala> Applicative[Option].unit
res0: Option[Unit] = Some(())
Inherited from:
Applicative
def unit: F[Unit]
Implicitly added by genConcurrentForOptionT

Returns an F[Unit] value, equivalent with pure(()).

Returns an F[Unit] value, equivalent with pure(()).

A useful shorthand, also allowing implementations to optimize the returned reference (e.g. it can be a val).

Example:

scala> import cats.implicits._

scala> Applicative[Option].unit
res0: Option[Unit] = Some(())
Inherited from:
Applicative
def unit: F[Unit]

Returns an F[Unit] value, equivalent with pure(()).

Returns an F[Unit] value, equivalent with pure(()).

A useful shorthand, also allowing implementations to optimize the returned reference (e.g. it can be a val).

Example:

scala> import cats.implicits._

scala> Applicative[Option].unit
res0: Option[Unit] = Some(())
Inherited from:
Applicative
def unlessA[A](cond: Boolean)(f: => F[A]): F[Unit]
Implicitly added by genConcurrentForEitherT

Returns the given argument (mapped to Unit) if cond is false, otherwise, unit lifted into F.

Returns the given argument (mapped to Unit) if cond is false, otherwise, unit lifted into F.

Example:

scala> import cats.implicits._

scala> Applicative[List].unlessA(true)(List(1, 2, 3))
res0: List[Unit] = List(())

scala> Applicative[List].unlessA(false)(List(1, 2, 3))
res1: List[Unit] = List((), (), ())

scala> Applicative[List].unlessA(true)(List.empty[Int])
res2: List[Unit] = List(())

scala> Applicative[List].unlessA(false)(List.empty[Int])
res3: List[Unit] = List()
Inherited from:
Applicative
def unlessA[A](cond: Boolean)(f: => F[A]): F[Unit]
Implicitly added by genConcurrentForKleisli

Returns the given argument (mapped to Unit) if cond is false, otherwise, unit lifted into F.

Returns the given argument (mapped to Unit) if cond is false, otherwise, unit lifted into F.

Example:

scala> import cats.implicits._

scala> Applicative[List].unlessA(true)(List(1, 2, 3))
res0: List[Unit] = List(())

scala> Applicative[List].unlessA(false)(List(1, 2, 3))
res1: List[Unit] = List((), (), ())

scala> Applicative[List].unlessA(true)(List.empty[Int])
res2: List[Unit] = List(())

scala> Applicative[List].unlessA(false)(List.empty[Int])
res3: List[Unit] = List()
Inherited from:
Applicative
def unlessA[A](cond: Boolean)(f: => F[A]): F[Unit]
Implicitly added by genConcurrentForOptionT

Returns the given argument (mapped to Unit) if cond is false, otherwise, unit lifted into F.

Returns the given argument (mapped to Unit) if cond is false, otherwise, unit lifted into F.

Example:

scala> import cats.implicits._

scala> Applicative[List].unlessA(true)(List(1, 2, 3))
res0: List[Unit] = List(())

scala> Applicative[List].unlessA(false)(List(1, 2, 3))
res1: List[Unit] = List((), (), ())

scala> Applicative[List].unlessA(true)(List.empty[Int])
res2: List[Unit] = List(())

scala> Applicative[List].unlessA(false)(List.empty[Int])
res3: List[Unit] = List()
Inherited from:
Applicative
def unlessA[A](cond: Boolean)(f: => F[A]): F[Unit]

Returns the given argument (mapped to Unit) if cond is false, otherwise, unit lifted into F.

Returns the given argument (mapped to Unit) if cond is false, otherwise, unit lifted into F.

Example:

scala> import cats.implicits._

scala> Applicative[List].unlessA(true)(List(1, 2, 3))
res0: List[Unit] = List(())

scala> Applicative[List].unlessA(false)(List(1, 2, 3))
res1: List[Unit] = List((), (), ())

scala> Applicative[List].unlessA(true)(List.empty[Int])
res2: List[Unit] = List(())

scala> Applicative[List].unlessA(false)(List.empty[Int])
res3: List[Unit] = List()
Inherited from:
Applicative
def untilDefinedM[A](foa: F[Option[A]]): F[A]
Implicitly added by genConcurrentForEitherT

This repeats an F until we get defined values. This can be useful for polling type operations on State (or RNG) Monads, or in effect monads.

This repeats an F until we get defined values. This can be useful for polling type operations on State (or RNG) Monads, or in effect monads.

Inherited from:
FlatMap
def untilDefinedM[A](foa: F[Option[A]]): F[A]
Implicitly added by genConcurrentForKleisli

This repeats an F until we get defined values. This can be useful for polling type operations on State (or RNG) Monads, or in effect monads.

This repeats an F until we get defined values. This can be useful for polling type operations on State (or RNG) Monads, or in effect monads.

Inherited from:
FlatMap
def untilDefinedM[A](foa: F[Option[A]]): F[A]
Implicitly added by genConcurrentForOptionT

This repeats an F until we get defined values. This can be useful for polling type operations on State (or RNG) Monads, or in effect monads.

This repeats an F until we get defined values. This can be useful for polling type operations on State (or RNG) Monads, or in effect monads.

Inherited from:
FlatMap
def untilDefinedM[A](foa: F[Option[A]]): F[A]

This repeats an F until we get defined values. This can be useful for polling type operations on State (or RNG) Monads, or in effect monads.

This repeats an F until we get defined values. This can be useful for polling type operations on State (or RNG) Monads, or in effect monads.

Inherited from:
FlatMap
def untilM[G[_], A](f: F[A])(cond: => F[Boolean])(implicit G: Alternative[G]): F[G[A]]
Implicitly added by genConcurrentForEitherT

Execute an action repeatedly until the Boolean condition returns true. The condition is evaluated after the loop body. Collects results into an arbitrary Alternative value, such as a Vector. This implementation uses append on each evaluation result, so avoid data structures with non-constant append performance, e.g. List.

Execute an action repeatedly until the Boolean condition returns true. The condition is evaluated after the loop body. Collects results into an arbitrary Alternative value, such as a Vector. This implementation uses append on each evaluation result, so avoid data structures with non-constant append performance, e.g. List.

Inherited from:
Monad
def untilM[G[_], A](f: F[A])(cond: => F[Boolean])(implicit G: Alternative[G]): F[G[A]]
Implicitly added by genConcurrentForKleisli

Execute an action repeatedly until the Boolean condition returns true. The condition is evaluated after the loop body. Collects results into an arbitrary Alternative value, such as a Vector. This implementation uses append on each evaluation result, so avoid data structures with non-constant append performance, e.g. List.

Execute an action repeatedly until the Boolean condition returns true. The condition is evaluated after the loop body. Collects results into an arbitrary Alternative value, such as a Vector. This implementation uses append on each evaluation result, so avoid data structures with non-constant append performance, e.g. List.

Inherited from:
Monad
def untilM[G[_], A](f: F[A])(cond: => F[Boolean])(implicit G: Alternative[G]): F[G[A]]
Implicitly added by genConcurrentForOptionT

Execute an action repeatedly until the Boolean condition returns true. The condition is evaluated after the loop body. Collects results into an arbitrary Alternative value, such as a Vector. This implementation uses append on each evaluation result, so avoid data structures with non-constant append performance, e.g. List.

Execute an action repeatedly until the Boolean condition returns true. The condition is evaluated after the loop body. Collects results into an arbitrary Alternative value, such as a Vector. This implementation uses append on each evaluation result, so avoid data structures with non-constant append performance, e.g. List.

Inherited from:
Monad
def untilM[G[_], A](f: F[A])(cond: => F[Boolean])(implicit G: Alternative[G]): F[G[A]]

Execute an action repeatedly until the Boolean condition returns true. The condition is evaluated after the loop body. Collects results into an arbitrary Alternative value, such as a Vector. This implementation uses append on each evaluation result, so avoid data structures with non-constant append performance, e.g. List.

Execute an action repeatedly until the Boolean condition returns true. The condition is evaluated after the loop body. Collects results into an arbitrary Alternative value, such as a Vector. This implementation uses append on each evaluation result, so avoid data structures with non-constant append performance, e.g. List.

Inherited from:
Monad
def untilM_[A](f: F[A])(cond: => F[Boolean]): F[Unit]
Implicitly added by genConcurrentForEitherT

Execute an action repeatedly until the Boolean condition returns true. The condition is evaluated after the loop body. Discards results.

Execute an action repeatedly until the Boolean condition returns true. The condition is evaluated after the loop body. Discards results.

Inherited from:
Monad
def untilM_[A](f: F[A])(cond: => F[Boolean]): F[Unit]
Implicitly added by genConcurrentForKleisli

Execute an action repeatedly until the Boolean condition returns true. The condition is evaluated after the loop body. Discards results.

Execute an action repeatedly until the Boolean condition returns true. The condition is evaluated after the loop body. Discards results.

Inherited from:
Monad
def untilM_[A](f: F[A])(cond: => F[Boolean]): F[Unit]
Implicitly added by genConcurrentForOptionT

Execute an action repeatedly until the Boolean condition returns true. The condition is evaluated after the loop body. Discards results.

Execute an action repeatedly until the Boolean condition returns true. The condition is evaluated after the loop body. Discards results.

Inherited from:
Monad
def untilM_[A](f: F[A])(cond: => F[Boolean]): F[Unit]

Execute an action repeatedly until the Boolean condition returns true. The condition is evaluated after the loop body. Discards results.

Execute an action repeatedly until the Boolean condition returns true. The condition is evaluated after the loop body. Discards results.

Inherited from:
Monad
def unzip[A, B](fab: F[(A, B)]): (F[A], F[B])
Implicitly added by genConcurrentForEitherT

Un-zips an F[(A, B)] consisting of element pairs or Tuple2 into two separate F's tupled.

Un-zips an F[(A, B)] consisting of element pairs or Tuple2 into two separate F's tupled.

NOTE: Check for effect duplication, possibly memoize before

scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForList

scala> Functor[List].unzip(List((1,2), (3, 4)))
res0: (List[Int], List[Int]) = (List(1, 3),List(2, 4))
Inherited from:
Functor
def unzip[A, B](fab: F[(A, B)]): (F[A], F[B])
Implicitly added by genConcurrentForKleisli

Un-zips an F[(A, B)] consisting of element pairs or Tuple2 into two separate F's tupled.

Un-zips an F[(A, B)] consisting of element pairs or Tuple2 into two separate F's tupled.

NOTE: Check for effect duplication, possibly memoize before

scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForList

scala> Functor[List].unzip(List((1,2), (3, 4)))
res0: (List[Int], List[Int]) = (List(1, 3),List(2, 4))
Inherited from:
Functor
def unzip[A, B](fab: F[(A, B)]): (F[A], F[B])
Implicitly added by genConcurrentForOptionT

Un-zips an F[(A, B)] consisting of element pairs or Tuple2 into two separate F's tupled.

Un-zips an F[(A, B)] consisting of element pairs or Tuple2 into two separate F's tupled.

NOTE: Check for effect duplication, possibly memoize before

scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForList

scala> Functor[List].unzip(List((1,2), (3, 4)))
res0: (List[Int], List[Int]) = (List(1, 3),List(2, 4))
Inherited from:
Functor
def unzip[A, B](fab: F[(A, B)]): (F[A], F[B])

Un-zips an F[(A, B)] consisting of element pairs or Tuple2 into two separate F's tupled.

Un-zips an F[(A, B)] consisting of element pairs or Tuple2 into two separate F's tupled.

NOTE: Check for effect duplication, possibly memoize before

scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForList

scala> Functor[List].unzip(List((1,2), (3, 4)))
res0: (List[Int], List[Int]) = (List(1, 3),List(2, 4))
Inherited from:
Functor
def void[A](fa: F[A]): F[Unit]
Implicitly added by genConcurrentForEitherT

Empty the fa of the values, preserving the structure

Empty the fa of the values, preserving the structure

Example:

scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForList

scala> Functor[List].void(List(1,2,3))
res0: List[Unit] = List((), (), ())
Inherited from:
Functor
def void[A](fa: F[A]): F[Unit]
Implicitly added by genConcurrentForKleisli

Empty the fa of the values, preserving the structure

Empty the fa of the values, preserving the structure

Example:

scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForList

scala> Functor[List].void(List(1,2,3))
res0: List[Unit] = List((), (), ())
Inherited from:
Functor
def void[A](fa: F[A]): F[Unit]
Implicitly added by genConcurrentForOptionT

Empty the fa of the values, preserving the structure

Empty the fa of the values, preserving the structure

Example:

scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForList

scala> Functor[List].void(List(1,2,3))
res0: List[Unit] = List((), (), ())
Inherited from:
Functor
def void[A](fa: F[A]): F[Unit]

Empty the fa of the values, preserving the structure

Empty the fa of the values, preserving the structure

Example:

scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForList

scala> Functor[List].void(List(1,2,3))
res0: List[Unit] = List((), (), ())
Inherited from:
Functor
def whenA[A](cond: Boolean)(f: => F[A]): F[Unit]
Implicitly added by genConcurrentForEitherT

Returns the given argument (mapped to Unit) if cond is true, otherwise, unit lifted into F.

Returns the given argument (mapped to Unit) if cond is true, otherwise, unit lifted into F.

Example:

scala> import cats.implicits._

scala> Applicative[List].whenA(true)(List(1, 2, 3))
res0: List[Unit] = List((), (), ())

scala> Applicative[List].whenA(false)(List(1, 2, 3))
res1: List[Unit] = List(())

scala> Applicative[List].whenA(true)(List.empty[Int])
res2: List[Unit] = List()

scala> Applicative[List].whenA(false)(List.empty[Int])
res3: List[Unit] = List(())
Inherited from:
Applicative
def whenA[A](cond: Boolean)(f: => F[A]): F[Unit]
Implicitly added by genConcurrentForKleisli

Returns the given argument (mapped to Unit) if cond is true, otherwise, unit lifted into F.

Returns the given argument (mapped to Unit) if cond is true, otherwise, unit lifted into F.

Example:

scala> import cats.implicits._

scala> Applicative[List].whenA(true)(List(1, 2, 3))
res0: List[Unit] = List((), (), ())

scala> Applicative[List].whenA(false)(List(1, 2, 3))
res1: List[Unit] = List(())

scala> Applicative[List].whenA(true)(List.empty[Int])
res2: List[Unit] = List()

scala> Applicative[List].whenA(false)(List.empty[Int])
res3: List[Unit] = List(())
Inherited from:
Applicative
def whenA[A](cond: Boolean)(f: => F[A]): F[Unit]
Implicitly added by genConcurrentForOptionT

Returns the given argument (mapped to Unit) if cond is true, otherwise, unit lifted into F.

Returns the given argument (mapped to Unit) if cond is true, otherwise, unit lifted into F.

Example:

scala> import cats.implicits._

scala> Applicative[List].whenA(true)(List(1, 2, 3))
res0: List[Unit] = List((), (), ())

scala> Applicative[List].whenA(false)(List(1, 2, 3))
res1: List[Unit] = List(())

scala> Applicative[List].whenA(true)(List.empty[Int])
res2: List[Unit] = List()

scala> Applicative[List].whenA(false)(List.empty[Int])
res3: List[Unit] = List(())
Inherited from:
Applicative
def whenA[A](cond: Boolean)(f: => F[A]): F[Unit]

Returns the given argument (mapped to Unit) if cond is true, otherwise, unit lifted into F.

Returns the given argument (mapped to Unit) if cond is true, otherwise, unit lifted into F.

Example:

scala> import cats.implicits._

scala> Applicative[List].whenA(true)(List(1, 2, 3))
res0: List[Unit] = List((), (), ())

scala> Applicative[List].whenA(false)(List(1, 2, 3))
res1: List[Unit] = List(())

scala> Applicative[List].whenA(true)(List.empty[Int])
res2: List[Unit] = List()

scala> Applicative[List].whenA(false)(List.empty[Int])
res3: List[Unit] = List(())
Inherited from:
Applicative
def whileM[G[_], A](p: F[Boolean])(body: => F[A])(implicit G: Alternative[G]): F[G[A]]
Implicitly added by genConcurrentForEitherT

Execute an action repeatedly as long as the given Boolean expression returns true. The condition is evaluated before the loop body. Collects the results into an arbitrary Alternative value, such as a Vector. This implementation uses append on each evaluation result, so avoid data structures with non-constant append performance, e.g. List.

Execute an action repeatedly as long as the given Boolean expression returns true. The condition is evaluated before the loop body. Collects the results into an arbitrary Alternative value, such as a Vector. This implementation uses append on each evaluation result, so avoid data structures with non-constant append performance, e.g. List.

Inherited from:
Monad
def whileM[G[_], A](p: F[Boolean])(body: => F[A])(implicit G: Alternative[G]): F[G[A]]
Implicitly added by genConcurrentForKleisli

Execute an action repeatedly as long as the given Boolean expression returns true. The condition is evaluated before the loop body. Collects the results into an arbitrary Alternative value, such as a Vector. This implementation uses append on each evaluation result, so avoid data structures with non-constant append performance, e.g. List.

Execute an action repeatedly as long as the given Boolean expression returns true. The condition is evaluated before the loop body. Collects the results into an arbitrary Alternative value, such as a Vector. This implementation uses append on each evaluation result, so avoid data structures with non-constant append performance, e.g. List.

Inherited from:
Monad
def whileM[G[_], A](p: F[Boolean])(body: => F[A])(implicit G: Alternative[G]): F[G[A]]
Implicitly added by genConcurrentForOptionT

Execute an action repeatedly as long as the given Boolean expression returns true. The condition is evaluated before the loop body. Collects the results into an arbitrary Alternative value, such as a Vector. This implementation uses append on each evaluation result, so avoid data structures with non-constant append performance, e.g. List.

Execute an action repeatedly as long as the given Boolean expression returns true. The condition is evaluated before the loop body. Collects the results into an arbitrary Alternative value, such as a Vector. This implementation uses append on each evaluation result, so avoid data structures with non-constant append performance, e.g. List.

Inherited from:
Monad
def whileM[G[_], A](p: F[Boolean])(body: => F[A])(implicit G: Alternative[G]): F[G[A]]

Execute an action repeatedly as long as the given Boolean expression returns true. The condition is evaluated before the loop body. Collects the results into an arbitrary Alternative value, such as a Vector. This implementation uses append on each evaluation result, so avoid data structures with non-constant append performance, e.g. List.

Execute an action repeatedly as long as the given Boolean expression returns true. The condition is evaluated before the loop body. Collects the results into an arbitrary Alternative value, such as a Vector. This implementation uses append on each evaluation result, so avoid data structures with non-constant append performance, e.g. List.

Inherited from:
Monad
def whileM_[A](p: F[Boolean])(body: => F[A]): F[Unit]
Implicitly added by genConcurrentForEitherT

Execute an action repeatedly as long as the given Boolean expression returns true. The condition is evaluated before the loop body. Discards results.

Execute an action repeatedly as long as the given Boolean expression returns true. The condition is evaluated before the loop body. Discards results.

Inherited from:
Monad
def whileM_[A](p: F[Boolean])(body: => F[A]): F[Unit]
Implicitly added by genConcurrentForKleisli

Execute an action repeatedly as long as the given Boolean expression returns true. The condition is evaluated before the loop body. Discards results.

Execute an action repeatedly as long as the given Boolean expression returns true. The condition is evaluated before the loop body. Discards results.

Inherited from:
Monad
def whileM_[A](p: F[Boolean])(body: => F[A]): F[Unit]
Implicitly added by genConcurrentForOptionT

Execute an action repeatedly as long as the given Boolean expression returns true. The condition is evaluated before the loop body. Discards results.

Execute an action repeatedly as long as the given Boolean expression returns true. The condition is evaluated before the loop body. Discards results.

Inherited from:
Monad
def whileM_[A](p: F[Boolean])(body: => F[A]): F[Unit]

Execute an action repeatedly as long as the given Boolean expression returns true. The condition is evaluated before the loop body. Discards results.

Execute an action repeatedly as long as the given Boolean expression returns true. The condition is evaluated before the loop body. Discards results.

Inherited from:
Monad
def widen[A, B >: A](fa: F[A]): F[B]
Implicitly added by genConcurrentForEitherT

Lifts natural subtyping covariance of covariant Functors.

Lifts natural subtyping covariance of covariant Functors.

NOTE: In certain (perhaps contrived) situations that rely on universal equality this can result in a ClassCastException, because it is implemented as a type cast. It could be implemented as map(identity), but according to the functor laws, that should be equal to fa, and a type cast is often much more performant. See this example of widen creating a ClassCastException.

Example:

scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForOption

scala> val s = Some(42)
scala> Functor[Option].widen(s)
res0: Option[Int] = Some(42)
Inherited from:
Functor
def widen[A, B >: A](fa: F[A]): F[B]
Implicitly added by genConcurrentForKleisli

Lifts natural subtyping covariance of covariant Functors.

Lifts natural subtyping covariance of covariant Functors.

NOTE: In certain (perhaps contrived) situations that rely on universal equality this can result in a ClassCastException, because it is implemented as a type cast. It could be implemented as map(identity), but according to the functor laws, that should be equal to fa, and a type cast is often much more performant. See this example of widen creating a ClassCastException.

Example:

scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForOption

scala> val s = Some(42)
scala> Functor[Option].widen(s)
res0: Option[Int] = Some(42)
Inherited from:
Functor
def widen[A, B >: A](fa: F[A]): F[B]
Implicitly added by genConcurrentForOptionT

Lifts natural subtyping covariance of covariant Functors.

Lifts natural subtyping covariance of covariant Functors.

NOTE: In certain (perhaps contrived) situations that rely on universal equality this can result in a ClassCastException, because it is implemented as a type cast. It could be implemented as map(identity), but according to the functor laws, that should be equal to fa, and a type cast is often much more performant. See this example of widen creating a ClassCastException.

Example:

scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForOption

scala> val s = Some(42)
scala> Functor[Option].widen(s)
res0: Option[Int] = Some(42)
Inherited from:
Functor
def widen[A, B >: A](fa: F[A]): F[B]

Lifts natural subtyping covariance of covariant Functors.

Lifts natural subtyping covariance of covariant Functors.

NOTE: In certain (perhaps contrived) situations that rely on universal equality this can result in a ClassCastException, because it is implemented as a type cast. It could be implemented as map(identity), but according to the functor laws, that should be equal to fa, and a type cast is often much more performant. See this example of widen creating a ClassCastException.

Example:

scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForOption

scala> val s = Some(42)
scala> Functor[Option].widen(s)
res0: Option[Int] = Some(42)
Inherited from:
Functor

Deprecated and Inherited methods

@deprecated("Dangerous method, use ifM (a flatMap) or ifF (a map) instead", "2.6.2")
def ifA[A](fcond: F[Boolean])(ifTrue: F[A], ifFalse: F[A]): F[A]
Implicitly added by genConcurrentForEitherT
Deprecated
Inherited from:
Apply
@deprecated("Dangerous method, use ifM (a flatMap) or ifF (a map) instead", "2.6.2")
def ifA[A](fcond: F[Boolean])(ifTrue: F[A], ifFalse: F[A]): F[A]
Implicitly added by genConcurrentForKleisli
Deprecated
Inherited from:
Apply
@deprecated("Dangerous method, use ifM (a flatMap) or ifF (a map) instead", "2.6.2")
def ifA[A](fcond: F[Boolean])(ifTrue: F[A], ifFalse: F[A]): F[A]
Implicitly added by genConcurrentForOptionT
Deprecated
Inherited from:
Apply
@deprecated("Dangerous method, use ifM (a flatMap) or ifF (a map) instead", "2.6.2")
def ifA[A](fcond: F[Boolean])(ifTrue: F[A], ifFalse: F[A]): F[A]
Deprecated
Inherited from:
Apply