trait CommutativeMonadLaws[F[_]] extends MonadLaws[F] with CommutativeFlatMapLaws[F] with CommutativeApplicativeLaws[F]

Laws that must be obeyed by any CommutativeMonad.

Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. CommutativeMonadLaws
  2. CommutativeApplicativeLaws
  3. CommutativeFlatMapLaws
  4. CommutativeApplyLaws
  5. MonadLaws
  6. FlatMapLaws
  7. ApplicativeLaws
  8. ApplyLaws
  9. SemigroupalLaws
  10. FunctorLaws
  11. InvariantLaws
  12. AnyRef
  13. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. Protected

Concrete Value Members

  1. final def !=(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  2. final def ##: Int
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  4. def apProductConsistent[A, B](fa: F[A], f: F[(A) => B]): IsEq[F[B]]
    Definition Classes
    ApplicativeLaws
  5. def applicativeComposition[A, B, C](fa: F[A], fab: F[(A) => B], fbc: F[(B) => C]): IsEq[F[C]]

    This law is applyComposition stated in terms of pure.

    This law is applyComposition stated in terms of pure. It is a combination of applyComposition and applicativeMap and hence not strictly necessary.

    Definition Classes
    ApplicativeLaws
  6. def applicativeHomomorphism[A, B](a: A, f: (A) => B): IsEq[F[B]]
    Definition Classes
    ApplicativeLaws
  7. def applicativeIdentity[A](fa: F[A]): IsEq[F[A]]
    Definition Classes
    ApplicativeLaws
  8. def applicativeInterchange[A, B](a: A, ff: F[(A) => B]): IsEq[F[B]]
    Definition Classes
    ApplicativeLaws
  9. def applicativeMap[A, B](fa: F[A], f: (A) => B): IsEq[F[B]]
    Definition Classes
    ApplicativeLaws
  10. def applicativeUnit[A](a: A): IsEq[F[A]]
    Definition Classes
    ApplicativeLaws
  11. def applyCommutative[A, B, C](fa: F[A], fb: F[B], f: (A, B) => C): IsEq[F[C]]
    Definition Classes
    CommutativeApplyLaws
  12. def applyComposition[A, B, C](fa: F[A], fab: F[(A) => B], fbc: F[(B) => C]): IsEq[F[C]]
    Definition Classes
    ApplyLaws
  13. final def asInstanceOf[T0]: T0
    Definition Classes
    Any
  14. def clone(): AnyRef
    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws(classOf[java.lang.CloneNotSupportedException]) @native()
  15. def covariantComposition[A, B, C](fa: F[A], f: (A) => B, g: (B) => C): IsEq[F[C]]
    Definition Classes
    FunctorLaws
  16. def covariantIdentity[A](fa: F[A]): IsEq[F[A]]
    Definition Classes
    FunctorLaws
  17. final def eq(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  18. def equals(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef → Any
  19. def finalize(): Unit
    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws(classOf[java.lang.Throwable])
  20. def flatMapAssociativity[A, B, C](fa: F[A], f: (A) => F[B], g: (B) => F[C]): IsEq[F[C]]
    Definition Classes
    FlatMapLaws
  21. def flatMapConsistentApply[A, B](fa: F[A], fab: F[(A) => B]): IsEq[F[B]]
    Definition Classes
    FlatMapLaws
  22. def flatMapFromTailRecMConsistency[A, B](fa: F[A], fn: (A) => F[B]): IsEq[F[B]]

    It is possible to implement flatMap from tailRecM and map and it should agree with the flatMap implementation.

    It is possible to implement flatMap from tailRecM and map and it should agree with the flatMap implementation.

    Definition Classes
    FlatMapLaws
  23. def flatmapCommutative[A, B, C](fa: F[A], fb: F[B], g: (A, B) => F[C]): IsEq[F[C]]
    Definition Classes
    CommutativeFlatMapLaws
  24. final def getClass(): Class[_ <: AnyRef]
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  25. def hashCode(): Int
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  26. def invariantComposition[A, B, C](fa: F[A], f1: (A) => B, f2: (B) => A, g1: (B) => C, g2: (C) => B): IsEq[F[C]]
    Definition Classes
    InvariantLaws
  27. def invariantIdentity[A](fa: F[A]): IsEq[F[A]]
    Definition Classes
    InvariantLaws
  28. final def isInstanceOf[T0]: Boolean
    Definition Classes
    Any
  29. def kleisliAssociativity[A, B, C, D](f: (A) => F[B], g: (B) => F[C], h: (C) => F[D], a: A): IsEq[F[D]]

    The composition of cats.data.Kleisli arrows is associative.

    The composition of cats.data.Kleisli arrows is associative. This is analogous to flatMapAssociativity.

    Definition Classes
    FlatMapLaws
  30. def kleisliLeftIdentity[A, B](a: A, f: (A) => F[B]): IsEq[F[B]]

    pure is the left identity element under left-to-right composition of cats.data.Kleisli arrows.

    pure is the left identity element under left-to-right composition of cats.data.Kleisli arrows. This is analogous to monadLeftIdentity.

    Definition Classes
    MonadLaws
  31. def kleisliRightIdentity[A, B](a: A, f: (A) => F[B]): IsEq[F[B]]

    pure is the right identity element under left-to-right composition of cats.data.Kleisli arrows.

    pure is the right identity element under left-to-right composition of cats.data.Kleisli arrows. This is analogous to monadRightIdentity.

    Definition Classes
    MonadLaws
  32. def map2EvalConsistency[A, B, C](fa: F[A], fb: F[B], f: (A, B) => C): IsEq[F[C]]
    Definition Classes
    ApplyLaws
  33. def map2ProductConsistency[A, B, C](fa: F[A], fb: F[B], f: (A, B) => C): IsEq[F[C]]
    Definition Classes
    ApplyLaws
  34. def mapFlatMapCoherence[A, B](fa: F[A], f: (A) => B): IsEq[F[B]]

    Make sure that map and flatMap are consistent.

    Make sure that map and flatMap are consistent.

    Definition Classes
    MonadLaws
  35. def monadLeftIdentity[A, B](a: A, f: (A) => F[B]): IsEq[F[B]]
    Definition Classes
    MonadLaws
  36. def monadRightIdentity[A](fa: F[A]): IsEq[F[A]]
    Definition Classes
    MonadLaws
  37. def monoidalLeftIdentity[A](fa: F[A]): (F[(Unit, A)], F[A])
    Definition Classes
    ApplicativeLaws
  38. def monoidalRightIdentity[A](fa: F[A]): (F[(A, Unit)], F[A])
    Definition Classes
    ApplicativeLaws
  39. def mproductConsistency[A, B](fa: F[A], fb: (A) => F[B]): IsEq[F[(A, B)]]
    Definition Classes
    FlatMapLaws
  40. final def ne(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  41. final def notify(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  42. final def notifyAll(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  43. def productLConsistency[A, B](fa: F[A], fb: F[B]): IsEq[F[A]]
    Definition Classes
    ApplyLaws
  44. def productRConsistency[A, B](fa: F[A], fb: F[B]): IsEq[F[B]]
    Definition Classes
    ApplyLaws
  45. def semigroupalAssociativity[A, B, C](fa: F[A], fb: F[B], fc: F[C]): (F[(A, (B, C))], F[((A, B), C)])
    Definition Classes
    SemigroupalLaws
  46. final def synchronized[T0](arg0: => T0): T0
    Definition Classes
    AnyRef
  47. def tailRecMConsistentFlatMap[A](a: A, f: (A) => F[A]): IsEq[F[A]]
    Definition Classes
    FlatMapLaws
  48. lazy val tailRecMStackSafety: IsEq[F[Int]]
    Definition Classes
    MonadLaws
  49. def toString(): String
    Definition Classes
    AnyRef → Any
  50. final def wait(): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws(classOf[java.lang.InterruptedException])
  51. final def wait(arg0: Long, arg1: Int): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws(classOf[java.lang.InterruptedException])
  52. final def wait(arg0: Long): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws(classOf[java.lang.InterruptedException]) @native()

Inherited from CommutativeApplicativeLaws[F]

Inherited from CommutativeFlatMapLaws[F]

Inherited from CommutativeApplyLaws[F]

Inherited from MonadLaws[F]

Inherited from FlatMapLaws[F]

Inherited from ApplicativeLaws[F]

Inherited from ApplyLaws[F]

Inherited from SemigroupalLaws[F]

Inherited from FunctorLaws[F]

Inherited from InvariantLaws[F]

Inherited from AnyRef

Inherited from Any

Ungrouped