Interval

sealed abstract
class Interval[A] extends Serializable

Interval represents a set of values, usually numbers.

Intervals have upper and lower bounds. Each bound can be one of four kinds:

  • Closed: The boundary value is included in the interval. * Open: The boundary value is excluded from the interval. * Unbound: There is no boundary value. * Empty: The interval itself is empty.

When the underlying type of the interval supports it, intervals may be used in arithmetic. There are several possible interpretations of interval arithmetic: the interval can represent uncertainty about a single value (for instance, a quantity +/- tolerance in engineering) or it can represent all values in the interval simultaneously. In this implementation we have chosen to use the probabillistic interpretation.

One common pitfall with interval arithmetic is that many familiar algebraic relations do not hold. For instance, given two intervals a and b:

a == b does not imply a * a == a * b

Consider a = b = [-1, 1]. Since any number times itself is non-negative, a * a = [0, 1]. However, a * b = [-1, 1], since we may actually have a=1 and b=-1.

These situations will result in loss of precision (in the form of wider intervals). The result is not wrong per se, but less accurate than it could be.

These intervals should not be used with floating point bounds, as proper rounding is not implemented. Generally, the JVM is not an easy platform to perform robust arithmetic, as the IEEE 754 rounding modes cannot be set.

Companion
object
trait Serializable
class Object
trait Matchable
class Any
class Above[A]
class All[A]
class Below[A]
class Bounded[A]
class Empty[A]
class Point[A]

Value members

Abstract methods

Concrete methods

def &(rhs: Interval[A])(implicit o: Order[A]): Interval[A]
def *(rhs: Interval[A])(implicit o: Order[A], ev: Semiring[A]): Interval[A]
def *(rhs: A)(implicit o: Order[A], ev: Semiring[A]): Interval[A]
def +(rhs: Interval[A])(implicit o: Order[A], ev: AdditiveSemigroup[A]): Interval[A]
def +(rhs: A)(implicit ev: AdditiveSemigroup[A]): Interval[A]
def -(rhs: Interval[A])(implicit o: Order[A], ev: AdditiveGroup[A]): Interval[A]
def -(rhs: A)(implicit ev: AdditiveGroup[A]): Interval[A]
def --(rhs: Interval[A])(implicit o: Order[A]): List[Interval[A]]
def /(rhs: Interval[A])(implicit o: Order[A], ev: Field[A]): Interval[A]
def /(rhs: A)(implicit o: Order[A], ev: Field[A]): Interval[A]
def \(rhs: Interval[A])(implicit o: Order[A]): List[Interval[A]]
def abs(implicit o: Order[A], m: AdditiveGroup[A]): Interval[A]
def bottom(epsilon: A)(implicit r: AdditiveGroup[A]): Option[A]
def combine(rhs: Interval[A])(f: (A, A) => A)(implicit o: Order[A]): Interval[A]
def contains(t: A)(implicit o: Order[A]): Boolean
def crosses(t: A)(implicit o: Order[A]): Boolean
def crossesZero(implicit o: Order[A], ev: AdditiveMonoid[A]): Boolean
def dist(min: A, max: A, epsilon: A)(implicit u: Uniform[A], r: AdditiveGroup[A]): Dist[A]
def doesNotContain(t: A)(implicit o: Order[A]): Boolean
def fold[B](f: (Bound[A], Bound[A]) => B): B
def foldOver[B](init: B, step: A)(f: (B, A) => B)(implicit o: Order[A], ev: AdditiveMonoid[A], nt: NumberTag[A]): B
def hasAbove(t: A)(implicit o: Order[A]): Boolean
def hasAtOrAbove(t: A)(implicit o: Order[A]): Boolean
def hasAtOrBelow(t: A)(implicit o: Order[A]): Boolean
def hasBelow(t: A)(implicit o: Order[A]): Boolean
def intersect(rhs: Interval[A])(implicit o: Order[A]): Interval[A]
def intersects(rhs: Interval[A])(implicit o: Order[A]): Boolean
def isAt(t: A)(implicit o: Eq[A]): Boolean
def isBounded: Boolean
def isEmpty: Boolean
def isPoint: Boolean
def isProperSubsetOf(rhs: Interval[A])(implicit o: Order[A]): Boolean
def isProperSupersetOf(rhs: Interval[A])(implicit o: Order[A]): Boolean
def isSubsetOf(rhs: Interval[A])(implicit o: Order[A]): Boolean
def isSupersetOf(rhs: Interval[A])(implicit o: Order[A]): Boolean
def iterator(step: A)(implicit o: Order[A], ev: AdditiveMonoid[A], nt: NumberTag[A]): Iterator[A]

Build an Iterator[A] from an Interval[A] and a (step: A) parameter.

Build an Iterator[A] from an Interval[A] and a (step: A) parameter.

A positive 'step' means we are proceeding from the lower bound up, and a negative 'step' means we are proceeding from the upper bound down. In each case, the interval must be bounded on the side we are starting with (though it may be unbound on the opposite side). A zero 'step' is not allowed.

The step is repeatedly added to the starting parameter as long as the sum remains within the interval. This means that arithmetic error can accumulate (e.g. with doubles). However, this method does overflow checking to ensure that Intervals parameterized on integer types will behave correctly.

Users who want to avoid using arithmetic error should consider starting with an Interval[Rational], calling iterator with the exact step desired, then mapping to the original type (e.g. Double). For example:

 val ns = Interval.closed(Rational(0), Rational(5))
 val it = ns.iterator(Rational(1, 7)).map(_.toDouble)

This method provides some of the same functionality as Scala's NumericRange class.

def loop(step: A)(f: A => Unit)(implicit o: Order[A], ev: AdditiveMonoid[A], nt: NumberTag[A]): Unit
def mapAroundZero[B](f: Interval[A] => B)(implicit o: Order[A], ev: AdditiveMonoid[A]): (B, B)
def mapBounds[B : Order](f: A => B): Interval[B]
def nonEmpty: Boolean
def nroot(k: Int)(implicit o: Order[A], r: Ring[A], n: NRoot[A]): Interval[A]
def overlap(rhs: Interval[A])(implicit o: Order[A]): Overlap[A]

Result of overlapping this interval with another one. Can be one of the following:

Result of overlapping this interval with another one. Can be one of the following:

  • Equal if intervals are equal
  • Disjoint if intervals are notEmpty don't intersect
  • PartialOverlap if intervals intersect and neither is a subset of another
  • Subset if one interval (possibly empty) is a subset of another

Except for Equal, both original intervals are bound to respective result fields, allowing to determine exact overlap type.

For example (pseudo-code):

{
   val a = [5, 6]
   val b = (0, 1)

   // this returns Disjoint(b, a). Note a and b placement here, it means that b is strictly less then a.
   a.overlap(b)
}
def pow(k: Int)(implicit o: Order[A], r: Ring[A]): Interval[A]
def reciprocal(implicit o: Order[A], ev: Field[A]): Interval[A]
def split(t: A)(implicit o: Order[A]): (Interval[A], Interval[A])
def splitAtZero(implicit o: Order[A], ev: AdditiveMonoid[A]): (Interval[A], Interval[A])
def sqrt(implicit o: Order[A], r: Ring[A], n: NRoot[A]): Interval[A]
override
def toString(): String
Definition Classes
Any
def top(epsilon: A)(implicit r: AdditiveGroup[A]): Option[A]
def translate(p: Polynomial[A])(implicit o: Order[A], ev: Field[A]): Interval[A]

Apply the given polynomial to the interval.

Apply the given polynomial to the interval.

For every point contained in the interval, this method maps that point through the given polynomial. The resulting interval is the set of all the translated points. I.e.

result = { p(x) | x ∈ interval }

def unary_-(implicit ev: AdditiveGroup[A]): Interval[A]
def unary_~(implicit o: Order[A]): List[Interval[A]]
def union(rhs: Interval[A])(implicit o: Order[A]): Interval[A]
def vmax(rhs: Interval[A])(implicit o: Order[A]): Interval[A]
def vmin(rhs: Interval[A])(implicit o: Order[A]): Interval[A]
def |(rhs: Interval[A])(implicit o: Order[A]): Interval[A]
def ∈:(a: A)(implicit o: Order[A]): Boolean
def ∉:(a: A)(implicit o: Order[A]): Boolean
def (rhs: A)(implicit o: Order[A]): Boolean
def (rhs: A)(implicit o: Order[A]): Boolean
def (rhs: Interval[A])(implicit o: Order[A]): Interval[A]
def (rhs: Interval[A])(implicit o: Order[A]): Interval[A]
def (rhs: Interval[A])(implicit o: Order[A]): Boolean
def (rhs: Interval[A])(implicit o: Order[A]): Boolean
def (rhs: Interval[A])(implicit o: Order[A]): Boolean
def (rhs: Interval[A])(implicit o: Order[A]): Boolean