@Stability(value=Experimental) public static final class SageMakerCreateTrainingJob.Builder extends Object implements software.amazon.jsii.Builder<SageMakerCreateTrainingJob>
SageMakerCreateTrainingJob
.Modifier and Type | Method and Description |
---|---|
SageMakerCreateTrainingJob.Builder |
algorithmSpecification(AlgorithmSpecification algorithmSpecification)
(experimental) Identifies the training algorithm to use.
|
SageMakerCreateTrainingJob |
build() |
SageMakerCreateTrainingJob.Builder |
comment(String comment)
(experimental) An optional description for this state.
|
static SageMakerCreateTrainingJob.Builder |
create(software.constructs.Construct scope,
String id) |
SageMakerCreateTrainingJob.Builder |
heartbeat(Duration heartbeat)
(experimental) Timeout for the heartbeat.
|
SageMakerCreateTrainingJob.Builder |
hyperparameters(Map<String,? extends Object> hyperparameters)
(experimental) Algorithm-specific parameters that influence the quality of the model.
|
SageMakerCreateTrainingJob.Builder |
inputDataConfig(List<? extends Channel> inputDataConfig)
(experimental) Describes the various datasets (e.g.
|
SageMakerCreateTrainingJob.Builder |
inputPath(String inputPath)
(experimental) JSONPath expression to select part of the state to be the input to this state.
|
SageMakerCreateTrainingJob.Builder |
integrationPattern(IntegrationPattern integrationPattern)
(experimental) AWS Step Functions integrates with services directly in the Amazon States Language.
|
SageMakerCreateTrainingJob.Builder |
outputDataConfig(OutputDataConfig outputDataConfig)
(experimental) Identifies the Amazon S3 location where you want Amazon SageMaker to save the results of model training.
|
SageMakerCreateTrainingJob.Builder |
outputPath(String outputPath)
(experimental) JSONPath expression to select select a portion of the state output to pass to the next state.
|
SageMakerCreateTrainingJob.Builder |
resourceConfig(ResourceConfig resourceConfig)
(experimental) Specifies the resources, ML compute instances, and ML storage volumes to deploy for model training.
|
SageMakerCreateTrainingJob.Builder |
resultPath(String resultPath)
(experimental) JSONPath expression to indicate where to inject the state's output.
|
SageMakerCreateTrainingJob.Builder |
resultSelector(Map<String,? extends Object> resultSelector)
(experimental) The JSON that will replace the state's raw result and become the effective result before ResultPath is applied.
|
SageMakerCreateTrainingJob.Builder |
role(IRole role)
(experimental) Role for the Training Job.
|
SageMakerCreateTrainingJob.Builder |
stoppingCondition(StoppingCondition stoppingCondition)
(experimental) Sets a time limit for training.
|
SageMakerCreateTrainingJob.Builder |
tags(Map<String,String> tags)
(experimental) Tags to be applied to the train job.
|
SageMakerCreateTrainingJob.Builder |
timeout(Duration timeout)
(experimental) Timeout for the state machine.
|
SageMakerCreateTrainingJob.Builder |
trainingJobName(String trainingJobName)
(experimental) Training Job Name.
|
SageMakerCreateTrainingJob.Builder |
vpcConfig(VpcConfig vpcConfig)
(experimental) Specifies the VPC that you want your training job to connect to.
|
@Stability(value=Experimental) public static SageMakerCreateTrainingJob.Builder create(software.constructs.Construct scope, String id)
scope
- This parameter is required.id
- This parameter is required.SageMakerCreateTrainingJob.Builder
.@Stability(value=Experimental) public SageMakerCreateTrainingJob.Builder comment(String comment)
Default: - No comment
comment
- An optional description for this state. This parameter is required.this
@Stability(value=Experimental) public SageMakerCreateTrainingJob.Builder heartbeat(Duration heartbeat)
Default: - None
heartbeat
- Timeout for the heartbeat. This parameter is required.this
@Stability(value=Experimental) public SageMakerCreateTrainingJob.Builder inputPath(String inputPath)
May also be the special value JsonPath.DISCARD, which will cause the effective input to be the empty object {}.
Default: - The entire task input (JSON path '$')
inputPath
- JSONPath expression to select part of the state to be the input to this state. This parameter is required.this
@Stability(value=Experimental) public SageMakerCreateTrainingJob.Builder integrationPattern(IntegrationPattern integrationPattern)
You can control these AWS services using service integration patterns
Default: IntegrationPattern.REQUEST_RESPONSE
integrationPattern
- AWS Step Functions integrates with services directly in the Amazon States Language. This parameter is required.this
https://docs.aws.amazon.com/step-functions/latest/dg/connect-to-resource.html#connect-wait-token
@Stability(value=Experimental) public SageMakerCreateTrainingJob.Builder outputPath(String outputPath)
May also be the special value JsonPath.DISCARD, which will cause the effective output to be the empty object {}.
Default: - The entire JSON node determined by the state input, the task result, and resultPath is passed to the next state (JSON path '$')
outputPath
- JSONPath expression to select select a portion of the state output to pass to the next state. This parameter is required.this
@Stability(value=Experimental) public SageMakerCreateTrainingJob.Builder resultPath(String resultPath)
May also be the special value JsonPath.DISCARD, which will cause the state's input to become its output.
Default: - Replaces the entire input with the result (JSON path '$')
resultPath
- JSONPath expression to indicate where to inject the state's output. This parameter is required.this
@Stability(value=Experimental) public SageMakerCreateTrainingJob.Builder resultSelector(Map<String,? extends Object> resultSelector)
You can use ResultSelector to create a payload with values that are static or selected from the state's raw result.
Default: - None
resultSelector
- The JSON that will replace the state's raw result and become the effective result before ResultPath is applied. This parameter is required.this
https://docs.aws.amazon.com/step-functions/latest/dg/input-output-inputpath-params.html#input-output-resultselector
@Stability(value=Experimental) public SageMakerCreateTrainingJob.Builder timeout(Duration timeout)
Default: - None
timeout
- Timeout for the state machine. This parameter is required.this
@Stability(value=Experimental) public SageMakerCreateTrainingJob.Builder algorithmSpecification(AlgorithmSpecification algorithmSpecification)
algorithmSpecification
- Identifies the training algorithm to use. This parameter is required.this
@Stability(value=Experimental) public SageMakerCreateTrainingJob.Builder inputDataConfig(List<? extends Channel> inputDataConfig)
inputDataConfig
- Describes the various datasets (e.g. train, validation, test) and the Amazon S3 location where stored. This parameter is required.this
@Stability(value=Experimental) public SageMakerCreateTrainingJob.Builder outputDataConfig(OutputDataConfig outputDataConfig)
outputDataConfig
- Identifies the Amazon S3 location where you want Amazon SageMaker to save the results of model training. This parameter is required.this
@Stability(value=Experimental) public SageMakerCreateTrainingJob.Builder trainingJobName(String trainingJobName)
trainingJobName
- Training Job Name. This parameter is required.this
@Stability(value=Experimental) public SageMakerCreateTrainingJob.Builder hyperparameters(Map<String,? extends Object> hyperparameters)
Set hyperparameters before you start the learning process. For a list of hyperparameters provided by Amazon SageMaker
Default: - No hyperparameters
hyperparameters
- Algorithm-specific parameters that influence the quality of the model. This parameter is required.this
https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html
@Stability(value=Experimental) public SageMakerCreateTrainingJob.Builder resourceConfig(ResourceConfig resourceConfig)
Default: - 1 instance of EC2 `M4.XLarge` with `10GB` volume
resourceConfig
- Specifies the resources, ML compute instances, and ML storage volumes to deploy for model training. This parameter is required.this
@Stability(value=Experimental) public SageMakerCreateTrainingJob.Builder role(IRole role)
The role must be granted all necessary permissions for the SageMaker training job to be able to operate.
See https://docs.aws.amazon.com/fr_fr/sagemaker/latest/dg/sagemaker-roles.html#sagemaker-roles-createtrainingjob-perms
Default: - a role will be created.
role
- Role for the Training Job. This parameter is required.this
@Stability(value=Experimental) public SageMakerCreateTrainingJob.Builder stoppingCondition(StoppingCondition stoppingCondition)
Default: - max runtime of 1 hour
stoppingCondition
- Sets a time limit for training. This parameter is required.this
@Stability(value=Experimental) public SageMakerCreateTrainingJob.Builder tags(Map<String,String> tags)
Default: - No tags
tags
- Tags to be applied to the train job. This parameter is required.this
@Stability(value=Experimental) public SageMakerCreateTrainingJob.Builder vpcConfig(VpcConfig vpcConfig)
Default: - No VPC
vpcConfig
- Specifies the VPC that you want your training job to connect to. This parameter is required.this
@Stability(value=Experimental) public SageMakerCreateTrainingJob build()
build
in interface software.amazon.jsii.Builder<SageMakerCreateTrainingJob>
Copyright © 2021. All rights reserved.