@Generated(value="software.amazon.awssdk:codegen") public final class AlgorithmSpecification extends Object implements SdkPojo, Serializable, ToCopyableBuilder<AlgorithmSpecification.Builder,AlgorithmSpecification>
Specifies the training algorithm to use in a CreateTrainingJob request.
For more information about algorithms provided by SageMaker, see Algorithms. For information about using your own algorithms, see Using Your Own Algorithms with Amazon SageMaker.
| Modifier and Type | Class and Description |
|---|---|
static interface |
AlgorithmSpecification.Builder |
| Modifier and Type | Method and Description |
|---|---|
String |
algorithmName()
The name of the algorithm resource to use for the training job.
|
static AlgorithmSpecification.Builder |
builder() |
Boolean |
enableSageMakerMetricsTimeSeries()
To generate and save time-series metrics during training, set to
true. |
boolean |
equals(Object obj) |
boolean |
equalsBySdkFields(Object obj) |
<T> Optional<T> |
getValueForField(String fieldName,
Class<T> clazz) |
int |
hashCode() |
boolean |
hasMetricDefinitions()
For responses, this returns true if the service returned a value for the MetricDefinitions property.
|
List<MetricDefinition> |
metricDefinitions()
A list of metric definition objects.
|
List<SdkField<?>> |
sdkFields() |
static Class<? extends AlgorithmSpecification.Builder> |
serializableBuilderClass() |
AlgorithmSpecification.Builder |
toBuilder() |
String |
toString()
Returns a string representation of this object.
|
String |
trainingImage()
The registry path of the Docker image that contains the training algorithm.
|
TrainingInputMode |
trainingInputMode()
Returns the value of the TrainingInputMode property for this object.
|
String |
trainingInputModeAsString()
Returns the value of the TrainingInputMode property for this object.
|
clone, finalize, getClass, notify, notifyAll, wait, wait, waitcopypublic final String trainingImage()
The registry path of the Docker image that contains the training algorithm. For information about docker registry
paths for SageMaker built-in algorithms, see Docker Registry
Paths and Example Code in the Amazon SageMaker developer guide. SageMaker supports both
registry/repository[:tag] and registry/repository[@digest] image path formats. For more
information about using your custom training container, see Using Your Own Algorithms with Amazon
SageMaker.
You must specify either the algorithm name to the AlgorithmName parameter or the image URI of the
algorithm container to the TrainingImage parameter.
For more information, see the note in the AlgorithmName parameter description.
registry/repository[:tag] and registry/repository[@digest] image path
formats. For more information about using your custom training container, see Using Your Own Algorithms
with Amazon SageMaker.
You must specify either the algorithm name to the AlgorithmName parameter or the image URI
of the algorithm container to the TrainingImage parameter.
For more information, see the note in the AlgorithmName parameter description.
public final String algorithmName()
The name of the algorithm resource to use for the training job. This must be an algorithm resource that you created or subscribe to on Amazon Web Services Marketplace.
You must specify either the algorithm name to the AlgorithmName parameter or the image URI of the
algorithm container to the TrainingImage parameter.
Note that the AlgorithmName parameter is mutually exclusive with the TrainingImage
parameter. If you specify a value for the AlgorithmName parameter, you can't specify a value for
TrainingImage, and vice versa.
If you specify values for both parameters, the training job might break; if you don't specify any value for both
parameters, the training job might raise a null error.
You must specify either the algorithm name to the AlgorithmName parameter or the image URI
of the algorithm container to the TrainingImage parameter.
Note that the AlgorithmName parameter is mutually exclusive with the
TrainingImage parameter. If you specify a value for the AlgorithmName
parameter, you can't specify a value for TrainingImage, and vice versa.
If you specify values for both parameters, the training job might break; if you don't specify any value
for both parameters, the training job might raise a null error.
public final TrainingInputMode trainingInputMode()
If the service returns an enum value that is not available in the current SDK version, trainingInputMode
will return TrainingInputMode.UNKNOWN_TO_SDK_VERSION. The raw value returned by the service is available
from trainingInputModeAsString().
TrainingInputModepublic final String trainingInputModeAsString()
If the service returns an enum value that is not available in the current SDK version, trainingInputMode
will return TrainingInputMode.UNKNOWN_TO_SDK_VERSION. The raw value returned by the service is available
from trainingInputModeAsString().
TrainingInputModepublic final boolean hasMetricDefinitions()
isEmpty() method on the property).
This is useful because the SDK will never return a null collection or map, but you may need to differentiate
between the service returning nothing (or null) and the service returning an empty collection or map. For
requests, this returns true if a value for the property was specified in the request builder, and false if a
value was not specified.public final List<MetricDefinition> metricDefinitions()
A list of metric definition objects. Each object specifies the metric name and regular expressions used to parse algorithm logs. SageMaker publishes each metric to Amazon CloudWatch.
Attempts to modify the collection returned by this method will result in an UnsupportedOperationException.
This method will never return null. If you would like to know whether the service returned this field (so that
you can differentiate between null and empty), you can use the hasMetricDefinitions() method.
public final Boolean enableSageMakerMetricsTimeSeries()
To generate and save time-series metrics during training, set to true. The default is
false and time-series metrics aren't generated except in the following cases:
You use one of the SageMaker built-in algorithms
You use one of the following Prebuilt SageMaker Docker Images:
Tensorflow (version >= 1.15)
MXNet (version >= 1.6)
PyTorch (version >= 1.3)
You specify at least one MetricDefinition
true. The default is
false and time-series metrics aren't generated except in the following cases:
You use one of the SageMaker built-in algorithms
You use one of the following Prebuilt SageMaker Docker Images:
Tensorflow (version >= 1.15)
MXNet (version >= 1.6)
PyTorch (version >= 1.3)
You specify at least one MetricDefinition
public AlgorithmSpecification.Builder toBuilder()
toBuilder in interface ToCopyableBuilder<AlgorithmSpecification.Builder,AlgorithmSpecification>public static AlgorithmSpecification.Builder builder()
public static Class<? extends AlgorithmSpecification.Builder> serializableBuilderClass()
public final boolean equalsBySdkFields(Object obj)
equalsBySdkFields in interface SdkPojopublic final String toString()
Copyright © 2022. All rights reserved.