Interface CreateAutoMlJobV2Request.Builder
-
- All Superinterfaces:
AwsRequest.Builder
,Buildable
,CopyableBuilder<CreateAutoMlJobV2Request.Builder,CreateAutoMlJobV2Request>
,SageMakerRequest.Builder
,SdkBuilder<CreateAutoMlJobV2Request.Builder,CreateAutoMlJobV2Request>
,SdkPojo
,SdkRequest.Builder
- Enclosing class:
- CreateAutoMlJobV2Request
public static interface CreateAutoMlJobV2Request.Builder extends SageMakerRequest.Builder, SdkPojo, CopyableBuilder<CreateAutoMlJobV2Request.Builder,CreateAutoMlJobV2Request>
-
-
Method Summary
All Methods Instance Methods Abstract Methods Default Methods Modifier and Type Method Description default CreateAutoMlJobV2Request.Builder
autoMLComputeConfig(Consumer<AutoMLComputeConfig.Builder> autoMLComputeConfig)
Specifies the compute configuration for the AutoML job V2.CreateAutoMlJobV2Request.Builder
autoMLComputeConfig(AutoMLComputeConfig autoMLComputeConfig)
Specifies the compute configuration for the AutoML job V2.CreateAutoMlJobV2Request.Builder
autoMLJobInputDataConfig(Collection<AutoMLJobChannel> autoMLJobInputDataConfig)
An array of channel objects describing the input data and their location.CreateAutoMlJobV2Request.Builder
autoMLJobInputDataConfig(Consumer<AutoMLJobChannel.Builder>... autoMLJobInputDataConfig)
An array of channel objects describing the input data and their location.CreateAutoMlJobV2Request.Builder
autoMLJobInputDataConfig(AutoMLJobChannel... autoMLJobInputDataConfig)
An array of channel objects describing the input data and their location.CreateAutoMlJobV2Request.Builder
autoMLJobName(String autoMLJobName)
Identifies an Autopilot job.default CreateAutoMlJobV2Request.Builder
autoMLJobObjective(Consumer<AutoMLJobObjective.Builder> autoMLJobObjective)
Specifies a metric to minimize or maximize as the objective of a job.CreateAutoMlJobV2Request.Builder
autoMLJobObjective(AutoMLJobObjective autoMLJobObjective)
Specifies a metric to minimize or maximize as the objective of a job.default CreateAutoMlJobV2Request.Builder
autoMLProblemTypeConfig(Consumer<AutoMLProblemTypeConfig.Builder> autoMLProblemTypeConfig)
Defines the configuration settings of one of the supported problem types.CreateAutoMlJobV2Request.Builder
autoMLProblemTypeConfig(AutoMLProblemTypeConfig autoMLProblemTypeConfig)
Defines the configuration settings of one of the supported problem types.default CreateAutoMlJobV2Request.Builder
dataSplitConfig(Consumer<AutoMLDataSplitConfig.Builder> dataSplitConfig)
This structure specifies how to split the data into train and validation datasets.CreateAutoMlJobV2Request.Builder
dataSplitConfig(AutoMLDataSplitConfig dataSplitConfig)
This structure specifies how to split the data into train and validation datasets.default CreateAutoMlJobV2Request.Builder
modelDeployConfig(Consumer<ModelDeployConfig.Builder> modelDeployConfig)
Specifies how to generate the endpoint name for an automatic one-click Autopilot model deployment.CreateAutoMlJobV2Request.Builder
modelDeployConfig(ModelDeployConfig modelDeployConfig)
Specifies how to generate the endpoint name for an automatic one-click Autopilot model deployment.default CreateAutoMlJobV2Request.Builder
outputDataConfig(Consumer<AutoMLOutputDataConfig.Builder> outputDataConfig)
Provides information about encryption and the Amazon S3 output path needed to store artifacts from an AutoML job.CreateAutoMlJobV2Request.Builder
outputDataConfig(AutoMLOutputDataConfig outputDataConfig)
Provides information about encryption and the Amazon S3 output path needed to store artifacts from an AutoML job.CreateAutoMlJobV2Request.Builder
overrideConfiguration(Consumer<AwsRequestOverrideConfiguration.Builder> builderConsumer)
CreateAutoMlJobV2Request.Builder
overrideConfiguration(AwsRequestOverrideConfiguration overrideConfiguration)
CreateAutoMlJobV2Request.Builder
roleArn(String roleArn)
The ARN of the role that is used to access the data.default CreateAutoMlJobV2Request.Builder
securityConfig(Consumer<AutoMLSecurityConfig.Builder> securityConfig)
The security configuration for traffic encryption or Amazon VPC settings.CreateAutoMlJobV2Request.Builder
securityConfig(AutoMLSecurityConfig securityConfig)
The security configuration for traffic encryption or Amazon VPC settings.CreateAutoMlJobV2Request.Builder
tags(Collection<Tag> tags)
An array of key-value pairs.CreateAutoMlJobV2Request.Builder
tags(Consumer<Tag.Builder>... tags)
An array of key-value pairs.CreateAutoMlJobV2Request.Builder
tags(Tag... tags)
An array of key-value pairs.-
Methods inherited from interface software.amazon.awssdk.awscore.AwsRequest.Builder
overrideConfiguration
-
Methods inherited from interface software.amazon.awssdk.utils.builder.CopyableBuilder
copy
-
Methods inherited from interface software.amazon.awssdk.services.sagemaker.model.SageMakerRequest.Builder
build
-
Methods inherited from interface software.amazon.awssdk.utils.builder.SdkBuilder
applyMutation, build
-
Methods inherited from interface software.amazon.awssdk.core.SdkPojo
equalsBySdkFields, sdkFields
-
-
-
-
Method Detail
-
autoMLJobName
CreateAutoMlJobV2Request.Builder autoMLJobName(String autoMLJobName)
Identifies an Autopilot job. The name must be unique to your account and is case insensitive.
- Parameters:
autoMLJobName
- Identifies an Autopilot job. The name must be unique to your account and is case insensitive.- Returns:
- Returns a reference to this object so that method calls can be chained together.
-
autoMLJobInputDataConfig
CreateAutoMlJobV2Request.Builder autoMLJobInputDataConfig(Collection<AutoMLJobChannel> autoMLJobInputDataConfig)
An array of channel objects describing the input data and their location. Each channel is a named input source. Similar to the InputDataConfig attribute in the
CreateAutoMLJob
input parameters. The supported formats depend on the problem type:-
For tabular problem types:
S3Prefix
,ManifestFile
. -
For image classification:
S3Prefix
,ManifestFile
,AugmentedManifestFile
. -
For text classification:
S3Prefix
. -
For time-series forecasting:
S3Prefix
. -
For text generation (LLMs fine-tuning):
S3Prefix
.
- Parameters:
autoMLJobInputDataConfig
- An array of channel objects describing the input data and their location. Each channel is a named input source. Similar to the InputDataConfig attribute in theCreateAutoMLJob
input parameters. The supported formats depend on the problem type:-
For tabular problem types:
S3Prefix
,ManifestFile
. -
For image classification:
S3Prefix
,ManifestFile
,AugmentedManifestFile
. -
For text classification:
S3Prefix
. -
For time-series forecasting:
S3Prefix
. -
For text generation (LLMs fine-tuning):
S3Prefix
.
-
- Returns:
- Returns a reference to this object so that method calls can be chained together.
-
-
autoMLJobInputDataConfig
CreateAutoMlJobV2Request.Builder autoMLJobInputDataConfig(AutoMLJobChannel... autoMLJobInputDataConfig)
An array of channel objects describing the input data and their location. Each channel is a named input source. Similar to the InputDataConfig attribute in the
CreateAutoMLJob
input parameters. The supported formats depend on the problem type:-
For tabular problem types:
S3Prefix
,ManifestFile
. -
For image classification:
S3Prefix
,ManifestFile
,AugmentedManifestFile
. -
For text classification:
S3Prefix
. -
For time-series forecasting:
S3Prefix
. -
For text generation (LLMs fine-tuning):
S3Prefix
.
- Parameters:
autoMLJobInputDataConfig
- An array of channel objects describing the input data and their location. Each channel is a named input source. Similar to the InputDataConfig attribute in theCreateAutoMLJob
input parameters. The supported formats depend on the problem type:-
For tabular problem types:
S3Prefix
,ManifestFile
. -
For image classification:
S3Prefix
,ManifestFile
,AugmentedManifestFile
. -
For text classification:
S3Prefix
. -
For time-series forecasting:
S3Prefix
. -
For text generation (LLMs fine-tuning):
S3Prefix
.
-
- Returns:
- Returns a reference to this object so that method calls can be chained together.
-
-
autoMLJobInputDataConfig
CreateAutoMlJobV2Request.Builder autoMLJobInputDataConfig(Consumer<AutoMLJobChannel.Builder>... autoMLJobInputDataConfig)
An array of channel objects describing the input data and their location. Each channel is a named input source. Similar to the InputDataConfig attribute in the
CreateAutoMLJob
input parameters. The supported formats depend on the problem type:-
For tabular problem types:
S3Prefix
,ManifestFile
. -
For image classification:
S3Prefix
,ManifestFile
,AugmentedManifestFile
. -
For text classification:
S3Prefix
. -
For time-series forecasting:
S3Prefix
. -
For text generation (LLMs fine-tuning):
S3Prefix
.
AutoMLJobChannel.Builder
avoiding the need to create one manually viaAutoMLJobChannel.builder()
.When the
Consumer
completes,SdkBuilder.build()
is called immediately and its result is passed to#autoMLJobInputDataConfig(List
.) - Parameters:
autoMLJobInputDataConfig
- a consumer that will call methods onAutoMLJobChannel.Builder
- Returns:
- Returns a reference to this object so that method calls can be chained together.
- See Also:
#autoMLJobInputDataConfig(java.util.Collection
)
-
-
outputDataConfig
CreateAutoMlJobV2Request.Builder outputDataConfig(AutoMLOutputDataConfig outputDataConfig)
Provides information about encryption and the Amazon S3 output path needed to store artifacts from an AutoML job.
- Parameters:
outputDataConfig
- Provides information about encryption and the Amazon S3 output path needed to store artifacts from an AutoML job.- Returns:
- Returns a reference to this object so that method calls can be chained together.
-
outputDataConfig
default CreateAutoMlJobV2Request.Builder outputDataConfig(Consumer<AutoMLOutputDataConfig.Builder> outputDataConfig)
Provides information about encryption and the Amazon S3 output path needed to store artifacts from an AutoML job.
This is a convenience method that creates an instance of theAutoMLOutputDataConfig.Builder
avoiding the need to create one manually viaAutoMLOutputDataConfig.builder()
.When the
Consumer
completes,SdkBuilder.build()
is called immediately and its result is passed tooutputDataConfig(AutoMLOutputDataConfig)
.- Parameters:
outputDataConfig
- a consumer that will call methods onAutoMLOutputDataConfig.Builder
- Returns:
- Returns a reference to this object so that method calls can be chained together.
- See Also:
outputDataConfig(AutoMLOutputDataConfig)
-
autoMLProblemTypeConfig
CreateAutoMlJobV2Request.Builder autoMLProblemTypeConfig(AutoMLProblemTypeConfig autoMLProblemTypeConfig)
Defines the configuration settings of one of the supported problem types.
- Parameters:
autoMLProblemTypeConfig
- Defines the configuration settings of one of the supported problem types.- Returns:
- Returns a reference to this object so that method calls can be chained together.
-
autoMLProblemTypeConfig
default CreateAutoMlJobV2Request.Builder autoMLProblemTypeConfig(Consumer<AutoMLProblemTypeConfig.Builder> autoMLProblemTypeConfig)
Defines the configuration settings of one of the supported problem types.
This is a convenience method that creates an instance of theAutoMLProblemTypeConfig.Builder
avoiding the need to create one manually viaAutoMLProblemTypeConfig.builder()
.When the
Consumer
completes,SdkBuilder.build()
is called immediately and its result is passed toautoMLProblemTypeConfig(AutoMLProblemTypeConfig)
.- Parameters:
autoMLProblemTypeConfig
- a consumer that will call methods onAutoMLProblemTypeConfig.Builder
- Returns:
- Returns a reference to this object so that method calls can be chained together.
- See Also:
autoMLProblemTypeConfig(AutoMLProblemTypeConfig)
-
roleArn
CreateAutoMlJobV2Request.Builder roleArn(String roleArn)
The ARN of the role that is used to access the data.
- Parameters:
roleArn
- The ARN of the role that is used to access the data.- Returns:
- Returns a reference to this object so that method calls can be chained together.
-
tags
CreateAutoMlJobV2Request.Builder tags(Collection<Tag> tags)
An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, such as by purpose, owner, or environment. For more information, see Tagging Amazon Web ServicesResources. Tag keys must be unique per resource.
- Parameters:
tags
- An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, such as by purpose, owner, or environment. For more information, see Tagging Amazon Web ServicesResources. Tag keys must be unique per resource.- Returns:
- Returns a reference to this object so that method calls can be chained together.
-
tags
CreateAutoMlJobV2Request.Builder tags(Tag... tags)
An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, such as by purpose, owner, or environment. For more information, see Tagging Amazon Web ServicesResources. Tag keys must be unique per resource.
- Parameters:
tags
- An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, such as by purpose, owner, or environment. For more information, see Tagging Amazon Web ServicesResources. Tag keys must be unique per resource.- Returns:
- Returns a reference to this object so that method calls can be chained together.
-
tags
CreateAutoMlJobV2Request.Builder tags(Consumer<Tag.Builder>... tags)
An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, such as by purpose, owner, or environment. For more information, see Tagging Amazon Web ServicesResources. Tag keys must be unique per resource.
This is a convenience method that creates an instance of theTag.Builder
avoiding the need to create one manually viaTag.builder()
.When the
Consumer
completes,SdkBuilder.build()
is called immediately and its result is passed to#tags(List
.) - Parameters:
tags
- a consumer that will call methods onTag.Builder
- Returns:
- Returns a reference to this object so that method calls can be chained together.
- See Also:
#tags(java.util.Collection
)
-
securityConfig
CreateAutoMlJobV2Request.Builder securityConfig(AutoMLSecurityConfig securityConfig)
The security configuration for traffic encryption or Amazon VPC settings.
- Parameters:
securityConfig
- The security configuration for traffic encryption or Amazon VPC settings.- Returns:
- Returns a reference to this object so that method calls can be chained together.
-
securityConfig
default CreateAutoMlJobV2Request.Builder securityConfig(Consumer<AutoMLSecurityConfig.Builder> securityConfig)
The security configuration for traffic encryption or Amazon VPC settings.
This is a convenience method that creates an instance of theAutoMLSecurityConfig.Builder
avoiding the need to create one manually viaAutoMLSecurityConfig.builder()
.When the
Consumer
completes,SdkBuilder.build()
is called immediately and its result is passed tosecurityConfig(AutoMLSecurityConfig)
.- Parameters:
securityConfig
- a consumer that will call methods onAutoMLSecurityConfig.Builder
- Returns:
- Returns a reference to this object so that method calls can be chained together.
- See Also:
securityConfig(AutoMLSecurityConfig)
-
autoMLJobObjective
CreateAutoMlJobV2Request.Builder autoMLJobObjective(AutoMLJobObjective autoMLJobObjective)
Specifies a metric to minimize or maximize as the objective of a job. If not specified, the default objective metric depends on the problem type. For the list of default values per problem type, see AutoMLJobObjective.
-
For tabular problem types: You must either provide both the
AutoMLJobObjective
and indicate the type of supervised learning problem inAutoMLProblemTypeConfig
(TabularJobConfig.ProblemType
), or none at all. -
For text generation problem types (LLMs fine-tuning): Fine-tuning language models in Autopilot does not require setting the
AutoMLJobObjective
field. Autopilot fine-tunes LLMs without requiring multiple candidates to be trained and evaluated. Instead, using your dataset, Autopilot directly fine-tunes your target model to enhance a default objective metric, the cross-entropy loss. After fine-tuning a language model, you can evaluate the quality of its generated text using different metrics. For a list of the available metrics, see Metrics for fine-tuning LLMs in Autopilot.
- Parameters:
autoMLJobObjective
- Specifies a metric to minimize or maximize as the objective of a job. If not specified, the default objective metric depends on the problem type. For the list of default values per problem type, see AutoMLJobObjective.-
For tabular problem types: You must either provide both the
AutoMLJobObjective
and indicate the type of supervised learning problem inAutoMLProblemTypeConfig
(TabularJobConfig.ProblemType
), or none at all. -
For text generation problem types (LLMs fine-tuning): Fine-tuning language models in Autopilot does not require setting the
AutoMLJobObjective
field. Autopilot fine-tunes LLMs without requiring multiple candidates to be trained and evaluated. Instead, using your dataset, Autopilot directly fine-tunes your target model to enhance a default objective metric, the cross-entropy loss. After fine-tuning a language model, you can evaluate the quality of its generated text using different metrics. For a list of the available metrics, see Metrics for fine-tuning LLMs in Autopilot.
-
- Returns:
- Returns a reference to this object so that method calls can be chained together.
-
-
autoMLJobObjective
default CreateAutoMlJobV2Request.Builder autoMLJobObjective(Consumer<AutoMLJobObjective.Builder> autoMLJobObjective)
Specifies a metric to minimize or maximize as the objective of a job. If not specified, the default objective metric depends on the problem type. For the list of default values per problem type, see AutoMLJobObjective.
-
For tabular problem types: You must either provide both the
AutoMLJobObjective
and indicate the type of supervised learning problem inAutoMLProblemTypeConfig
(TabularJobConfig.ProblemType
), or none at all. -
For text generation problem types (LLMs fine-tuning): Fine-tuning language models in Autopilot does not require setting the
AutoMLJobObjective
field. Autopilot fine-tunes LLMs without requiring multiple candidates to be trained and evaluated. Instead, using your dataset, Autopilot directly fine-tunes your target model to enhance a default objective metric, the cross-entropy loss. After fine-tuning a language model, you can evaluate the quality of its generated text using different metrics. For a list of the available metrics, see Metrics for fine-tuning LLMs in Autopilot.
AutoMLJobObjective.Builder
avoiding the need to create one manually viaAutoMLJobObjective.builder()
.When the
Consumer
completes,SdkBuilder.build()
is called immediately and its result is passed toautoMLJobObjective(AutoMLJobObjective)
.- Parameters:
autoMLJobObjective
- a consumer that will call methods onAutoMLJobObjective.Builder
- Returns:
- Returns a reference to this object so that method calls can be chained together.
- See Also:
autoMLJobObjective(AutoMLJobObjective)
-
-
modelDeployConfig
CreateAutoMlJobV2Request.Builder modelDeployConfig(ModelDeployConfig modelDeployConfig)
Specifies how to generate the endpoint name for an automatic one-click Autopilot model deployment.
- Parameters:
modelDeployConfig
- Specifies how to generate the endpoint name for an automatic one-click Autopilot model deployment.- Returns:
- Returns a reference to this object so that method calls can be chained together.
-
modelDeployConfig
default CreateAutoMlJobV2Request.Builder modelDeployConfig(Consumer<ModelDeployConfig.Builder> modelDeployConfig)
Specifies how to generate the endpoint name for an automatic one-click Autopilot model deployment.
This is a convenience method that creates an instance of theModelDeployConfig.Builder
avoiding the need to create one manually viaModelDeployConfig.builder()
.When the
Consumer
completes,SdkBuilder.build()
is called immediately and its result is passed tomodelDeployConfig(ModelDeployConfig)
.- Parameters:
modelDeployConfig
- a consumer that will call methods onModelDeployConfig.Builder
- Returns:
- Returns a reference to this object so that method calls can be chained together.
- See Also:
modelDeployConfig(ModelDeployConfig)
-
dataSplitConfig
CreateAutoMlJobV2Request.Builder dataSplitConfig(AutoMLDataSplitConfig dataSplitConfig)
This structure specifies how to split the data into train and validation datasets.
The validation and training datasets must contain the same headers. For jobs created by calling
CreateAutoMLJob
, the validation dataset must be less than 2 GB in size.This attribute must not be set for the time-series forecasting problem type, as Autopilot automatically splits the input dataset into training and validation sets.
- Parameters:
dataSplitConfig
- This structure specifies how to split the data into train and validation datasets.The validation and training datasets must contain the same headers. For jobs created by calling
CreateAutoMLJob
, the validation dataset must be less than 2 GB in size.This attribute must not be set for the time-series forecasting problem type, as Autopilot automatically splits the input dataset into training and validation sets.
- Returns:
- Returns a reference to this object so that method calls can be chained together.
-
dataSplitConfig
default CreateAutoMlJobV2Request.Builder dataSplitConfig(Consumer<AutoMLDataSplitConfig.Builder> dataSplitConfig)
This structure specifies how to split the data into train and validation datasets.
The validation and training datasets must contain the same headers. For jobs created by calling
CreateAutoMLJob
, the validation dataset must be less than 2 GB in size.This attribute must not be set for the time-series forecasting problem type, as Autopilot automatically splits the input dataset into training and validation sets.
AutoMLDataSplitConfig.Builder
avoiding the need to create one manually viaAutoMLDataSplitConfig.builder()
.When the
Consumer
completes,SdkBuilder.build()
is called immediately and its result is passed todataSplitConfig(AutoMLDataSplitConfig)
.- Parameters:
dataSplitConfig
- a consumer that will call methods onAutoMLDataSplitConfig.Builder
- Returns:
- Returns a reference to this object so that method calls can be chained together.
- See Also:
dataSplitConfig(AutoMLDataSplitConfig)
-
autoMLComputeConfig
CreateAutoMlJobV2Request.Builder autoMLComputeConfig(AutoMLComputeConfig autoMLComputeConfig)
Specifies the compute configuration for the AutoML job V2.
- Parameters:
autoMLComputeConfig
- Specifies the compute configuration for the AutoML job V2.- Returns:
- Returns a reference to this object so that method calls can be chained together.
-
autoMLComputeConfig
default CreateAutoMlJobV2Request.Builder autoMLComputeConfig(Consumer<AutoMLComputeConfig.Builder> autoMLComputeConfig)
Specifies the compute configuration for the AutoML job V2.
This is a convenience method that creates an instance of theAutoMLComputeConfig.Builder
avoiding the need to create one manually viaAutoMLComputeConfig.builder()
.When the
Consumer
completes,SdkBuilder.build()
is called immediately and its result is passed toautoMLComputeConfig(AutoMLComputeConfig)
.- Parameters:
autoMLComputeConfig
- a consumer that will call methods onAutoMLComputeConfig.Builder
- Returns:
- Returns a reference to this object so that method calls can be chained together.
- See Also:
autoMLComputeConfig(AutoMLComputeConfig)
-
overrideConfiguration
CreateAutoMlJobV2Request.Builder overrideConfiguration(AwsRequestOverrideConfiguration overrideConfiguration)
- Specified by:
overrideConfiguration
in interfaceAwsRequest.Builder
-
overrideConfiguration
CreateAutoMlJobV2Request.Builder overrideConfiguration(Consumer<AwsRequestOverrideConfiguration.Builder> builderConsumer)
- Specified by:
overrideConfiguration
in interfaceAwsRequest.Builder
-
-