Interface AutoMLJobChannel.Builder
-
- All Superinterfaces:
Buildable
,CopyableBuilder<AutoMLJobChannel.Builder,AutoMLJobChannel>
,SdkBuilder<AutoMLJobChannel.Builder,AutoMLJobChannel>
,SdkPojo
- Enclosing class:
- AutoMLJobChannel
public static interface AutoMLJobChannel.Builder extends SdkPojo, CopyableBuilder<AutoMLJobChannel.Builder,AutoMLJobChannel>
-
-
Method Summary
All Methods Instance Methods Abstract Methods Default Methods Modifier and Type Method Description AutoMLJobChannel.Builder
channelType(String channelType)
The type of channel.AutoMLJobChannel.Builder
channelType(AutoMLChannelType channelType)
The type of channel.AutoMLJobChannel.Builder
compressionType(String compressionType)
The allowed compression types depend on the input format and problem type.AutoMLJobChannel.Builder
compressionType(CompressionType compressionType)
The allowed compression types depend on the input format and problem type.AutoMLJobChannel.Builder
contentType(String contentType)
The content type of the data from the input source.default AutoMLJobChannel.Builder
dataSource(Consumer<AutoMLDataSource.Builder> dataSource)
The data source for an AutoML channel (Required).AutoMLJobChannel.Builder
dataSource(AutoMLDataSource dataSource)
The data source for an AutoML channel (Required).-
Methods inherited from interface software.amazon.awssdk.utils.builder.CopyableBuilder
copy
-
Methods inherited from interface software.amazon.awssdk.utils.builder.SdkBuilder
applyMutation, build
-
Methods inherited from interface software.amazon.awssdk.core.SdkPojo
equalsBySdkFields, sdkFieldNameToField, sdkFields
-
-
-
-
Method Detail
-
channelType
AutoMLJobChannel.Builder channelType(String channelType)
The type of channel. Defines whether the data are used for training or validation. The default value is
training
. Channels fortraining
andvalidation
must share the sameContentType
The type of channel defaults to
training
for the time-series forecasting problem type.- Parameters:
channelType
- The type of channel. Defines whether the data are used for training or validation. The default value istraining
. Channels fortraining
andvalidation
must share the sameContentType
The type of channel defaults to
training
for the time-series forecasting problem type.- Returns:
- Returns a reference to this object so that method calls can be chained together.
- See Also:
AutoMLChannelType
,AutoMLChannelType
-
channelType
AutoMLJobChannel.Builder channelType(AutoMLChannelType channelType)
The type of channel. Defines whether the data are used for training or validation. The default value is
training
. Channels fortraining
andvalidation
must share the sameContentType
The type of channel defaults to
training
for the time-series forecasting problem type.- Parameters:
channelType
- The type of channel. Defines whether the data are used for training or validation. The default value istraining
. Channels fortraining
andvalidation
must share the sameContentType
The type of channel defaults to
training
for the time-series forecasting problem type.- Returns:
- Returns a reference to this object so that method calls can be chained together.
- See Also:
AutoMLChannelType
,AutoMLChannelType
-
contentType
AutoMLJobChannel.Builder contentType(String contentType)
The content type of the data from the input source. The following are the allowed content types for different problems:
-
For tabular problem types:
text/csv;header=present
orx-application/vnd.amazon+parquet
. The default value istext/csv;header=present
. -
For image classification:
image/png
,image/jpeg
, orimage/*
. The default value isimage/*
. -
For text classification:
text/csv;header=present
orx-application/vnd.amazon+parquet
. The default value istext/csv;header=present
. -
For time-series forecasting:
text/csv;header=present
orx-application/vnd.amazon+parquet
. The default value istext/csv;header=present
. -
For text generation (LLMs fine-tuning):
text/csv;header=present
orx-application/vnd.amazon+parquet
. The default value istext/csv;header=present
.
- Parameters:
contentType
- The content type of the data from the input source. The following are the allowed content types for different problems:-
For tabular problem types:
text/csv;header=present
orx-application/vnd.amazon+parquet
. The default value istext/csv;header=present
. -
For image classification:
image/png
,image/jpeg
, orimage/*
. The default value isimage/*
. -
For text classification:
text/csv;header=present
orx-application/vnd.amazon+parquet
. The default value istext/csv;header=present
. -
For time-series forecasting:
text/csv;header=present
orx-application/vnd.amazon+parquet
. The default value istext/csv;header=present
. -
For text generation (LLMs fine-tuning):
text/csv;header=present
orx-application/vnd.amazon+parquet
. The default value istext/csv;header=present
.
-
- Returns:
- Returns a reference to this object so that method calls can be chained together.
-
-
compressionType
AutoMLJobChannel.Builder compressionType(String compressionType)
The allowed compression types depend on the input format and problem type. We allow the compression type
Gzip
forS3Prefix
inputs on tabular data only. For all other inputs, the compression type should beNone
. If no compression type is provided, we default toNone
.- Parameters:
compressionType
- The allowed compression types depend on the input format and problem type. We allow the compression typeGzip
forS3Prefix
inputs on tabular data only. For all other inputs, the compression type should beNone
. If no compression type is provided, we default toNone
.- Returns:
- Returns a reference to this object so that method calls can be chained together.
- See Also:
CompressionType
,CompressionType
-
compressionType
AutoMLJobChannel.Builder compressionType(CompressionType compressionType)
The allowed compression types depend on the input format and problem type. We allow the compression type
Gzip
forS3Prefix
inputs on tabular data only. For all other inputs, the compression type should beNone
. If no compression type is provided, we default toNone
.- Parameters:
compressionType
- The allowed compression types depend on the input format and problem type. We allow the compression typeGzip
forS3Prefix
inputs on tabular data only. For all other inputs, the compression type should beNone
. If no compression type is provided, we default toNone
.- Returns:
- Returns a reference to this object so that method calls can be chained together.
- See Also:
CompressionType
,CompressionType
-
dataSource
AutoMLJobChannel.Builder dataSource(AutoMLDataSource dataSource)
The data source for an AutoML channel (Required).
- Parameters:
dataSource
- The data source for an AutoML channel (Required).- Returns:
- Returns a reference to this object so that method calls can be chained together.
-
dataSource
default AutoMLJobChannel.Builder dataSource(Consumer<AutoMLDataSource.Builder> dataSource)
The data source for an AutoML channel (Required).
This is a convenience method that creates an instance of theAutoMLDataSource.Builder
avoiding the need to create one manually viaAutoMLDataSource.builder()
.When the
Consumer
completes,SdkBuilder.build()
is called immediately and its result is passed todataSource(AutoMLDataSource)
.- Parameters:
dataSource
- a consumer that will call methods onAutoMLDataSource.Builder
- Returns:
- Returns a reference to this object so that method calls can be chained together.
- See Also:
dataSource(AutoMLDataSource)
-
-