Interface HyperParameterTuningJobConfig.Builder
-
- All Superinterfaces:
Buildable
,CopyableBuilder<HyperParameterTuningJobConfig.Builder,HyperParameterTuningJobConfig>
,SdkBuilder<HyperParameterTuningJobConfig.Builder,HyperParameterTuningJobConfig>
,SdkPojo
- Enclosing class:
- HyperParameterTuningJobConfig
public static interface HyperParameterTuningJobConfig.Builder extends SdkPojo, CopyableBuilder<HyperParameterTuningJobConfig.Builder,HyperParameterTuningJobConfig>
-
-
Method Summary
All Methods Instance Methods Abstract Methods Default Methods Modifier and Type Method Description default HyperParameterTuningJobConfig.Builder
hyperParameterTuningJobObjective(Consumer<HyperParameterTuningJobObjective.Builder> hyperParameterTuningJobObjective)
The HyperParameterTuningJobObjective specifies the objective metric used to evaluate the performance of training jobs launched by this tuning job.HyperParameterTuningJobConfig.Builder
hyperParameterTuningJobObjective(HyperParameterTuningJobObjective hyperParameterTuningJobObjective)
The HyperParameterTuningJobObjective specifies the objective metric used to evaluate the performance of training jobs launched by this tuning job.default HyperParameterTuningJobConfig.Builder
parameterRanges(Consumer<ParameterRanges.Builder> parameterRanges)
The ParameterRanges object that specifies the ranges of hyperparameters that this tuning job searches over to find the optimal configuration for the highest model performance against your chosen objective metric.HyperParameterTuningJobConfig.Builder
parameterRanges(ParameterRanges parameterRanges)
The ParameterRanges object that specifies the ranges of hyperparameters that this tuning job searches over to find the optimal configuration for the highest model performance against your chosen objective metric.HyperParameterTuningJobConfig.Builder
randomSeed(Integer randomSeed)
A value used to initialize a pseudo-random number generator.default HyperParameterTuningJobConfig.Builder
resourceLimits(Consumer<ResourceLimits.Builder> resourceLimits)
The ResourceLimits object that specifies the maximum number of training and parallel training jobs that can be used for this hyperparameter tuning job.HyperParameterTuningJobConfig.Builder
resourceLimits(ResourceLimits resourceLimits)
The ResourceLimits object that specifies the maximum number of training and parallel training jobs that can be used for this hyperparameter tuning job.HyperParameterTuningJobConfig.Builder
strategy(String strategy)
Specifies how hyperparameter tuning chooses the combinations of hyperparameter values to use for the training job it launches.HyperParameterTuningJobConfig.Builder
strategy(HyperParameterTuningJobStrategyType strategy)
Specifies how hyperparameter tuning chooses the combinations of hyperparameter values to use for the training job it launches.default HyperParameterTuningJobConfig.Builder
strategyConfig(Consumer<HyperParameterTuningJobStrategyConfig.Builder> strategyConfig)
The configuration for theHyperband
optimization strategy.HyperParameterTuningJobConfig.Builder
strategyConfig(HyperParameterTuningJobStrategyConfig strategyConfig)
The configuration for theHyperband
optimization strategy.HyperParameterTuningJobConfig.Builder
trainingJobEarlyStoppingType(String trainingJobEarlyStoppingType)
Specifies whether to use early stopping for training jobs launched by the hyperparameter tuning job.HyperParameterTuningJobConfig.Builder
trainingJobEarlyStoppingType(TrainingJobEarlyStoppingType trainingJobEarlyStoppingType)
Specifies whether to use early stopping for training jobs launched by the hyperparameter tuning job.default HyperParameterTuningJobConfig.Builder
tuningJobCompletionCriteria(Consumer<TuningJobCompletionCriteria.Builder> tuningJobCompletionCriteria)
The tuning job's completion criteria.HyperParameterTuningJobConfig.Builder
tuningJobCompletionCriteria(TuningJobCompletionCriteria tuningJobCompletionCriteria)
The tuning job's completion criteria.-
Methods inherited from interface software.amazon.awssdk.utils.builder.CopyableBuilder
copy
-
Methods inherited from interface software.amazon.awssdk.utils.builder.SdkBuilder
applyMutation, build
-
Methods inherited from interface software.amazon.awssdk.core.SdkPojo
equalsBySdkFields, sdkFieldNameToField, sdkFields
-
-
-
-
Method Detail
-
strategy
HyperParameterTuningJobConfig.Builder strategy(String strategy)
Specifies how hyperparameter tuning chooses the combinations of hyperparameter values to use for the training job it launches. For information about search strategies, see How Hyperparameter Tuning Works.
- Parameters:
strategy
- Specifies how hyperparameter tuning chooses the combinations of hyperparameter values to use for the training job it launches. For information about search strategies, see How Hyperparameter Tuning Works.- Returns:
- Returns a reference to this object so that method calls can be chained together.
- See Also:
HyperParameterTuningJobStrategyType
,HyperParameterTuningJobStrategyType
-
strategy
HyperParameterTuningJobConfig.Builder strategy(HyperParameterTuningJobStrategyType strategy)
Specifies how hyperparameter tuning chooses the combinations of hyperparameter values to use for the training job it launches. For information about search strategies, see How Hyperparameter Tuning Works.
- Parameters:
strategy
- Specifies how hyperparameter tuning chooses the combinations of hyperparameter values to use for the training job it launches. For information about search strategies, see How Hyperparameter Tuning Works.- Returns:
- Returns a reference to this object so that method calls can be chained together.
- See Also:
HyperParameterTuningJobStrategyType
,HyperParameterTuningJobStrategyType
-
strategyConfig
HyperParameterTuningJobConfig.Builder strategyConfig(HyperParameterTuningJobStrategyConfig strategyConfig)
The configuration for the
Hyperband
optimization strategy. This parameter should be provided only ifHyperband
is selected as the strategy forHyperParameterTuningJobConfig
.- Parameters:
strategyConfig
- The configuration for theHyperband
optimization strategy. This parameter should be provided only ifHyperband
is selected as the strategy forHyperParameterTuningJobConfig
.- Returns:
- Returns a reference to this object so that method calls can be chained together.
-
strategyConfig
default HyperParameterTuningJobConfig.Builder strategyConfig(Consumer<HyperParameterTuningJobStrategyConfig.Builder> strategyConfig)
The configuration for the
This is a convenience method that creates an instance of theHyperband
optimization strategy. This parameter should be provided only ifHyperband
is selected as the strategy forHyperParameterTuningJobConfig
.HyperParameterTuningJobStrategyConfig.Builder
avoiding the need to create one manually viaHyperParameterTuningJobStrategyConfig.builder()
.When the
Consumer
completes,SdkBuilder.build()
is called immediately and its result is passed tostrategyConfig(HyperParameterTuningJobStrategyConfig)
.- Parameters:
strategyConfig
- a consumer that will call methods onHyperParameterTuningJobStrategyConfig.Builder
- Returns:
- Returns a reference to this object so that method calls can be chained together.
- See Also:
strategyConfig(HyperParameterTuningJobStrategyConfig)
-
hyperParameterTuningJobObjective
HyperParameterTuningJobConfig.Builder hyperParameterTuningJobObjective(HyperParameterTuningJobObjective hyperParameterTuningJobObjective)
The HyperParameterTuningJobObjective specifies the objective metric used to evaluate the performance of training jobs launched by this tuning job.
- Parameters:
hyperParameterTuningJobObjective
- The HyperParameterTuningJobObjective specifies the objective metric used to evaluate the performance of training jobs launched by this tuning job.- Returns:
- Returns a reference to this object so that method calls can be chained together.
-
hyperParameterTuningJobObjective
default HyperParameterTuningJobConfig.Builder hyperParameterTuningJobObjective(Consumer<HyperParameterTuningJobObjective.Builder> hyperParameterTuningJobObjective)
The HyperParameterTuningJobObjective specifies the objective metric used to evaluate the performance of training jobs launched by this tuning job.
This is a convenience method that creates an instance of theHyperParameterTuningJobObjective.Builder
avoiding the need to create one manually viaHyperParameterTuningJobObjective.builder()
.When the
Consumer
completes,SdkBuilder.build()
is called immediately and its result is passed tohyperParameterTuningJobObjective(HyperParameterTuningJobObjective)
.- Parameters:
hyperParameterTuningJobObjective
- a consumer that will call methods onHyperParameterTuningJobObjective.Builder
- Returns:
- Returns a reference to this object so that method calls can be chained together.
- See Also:
hyperParameterTuningJobObjective(HyperParameterTuningJobObjective)
-
resourceLimits
HyperParameterTuningJobConfig.Builder resourceLimits(ResourceLimits resourceLimits)
The ResourceLimits object that specifies the maximum number of training and parallel training jobs that can be used for this hyperparameter tuning job.
- Parameters:
resourceLimits
- The ResourceLimits object that specifies the maximum number of training and parallel training jobs that can be used for this hyperparameter tuning job.- Returns:
- Returns a reference to this object so that method calls can be chained together.
-
resourceLimits
default HyperParameterTuningJobConfig.Builder resourceLimits(Consumer<ResourceLimits.Builder> resourceLimits)
The ResourceLimits object that specifies the maximum number of training and parallel training jobs that can be used for this hyperparameter tuning job.
This is a convenience method that creates an instance of theResourceLimits.Builder
avoiding the need to create one manually viaResourceLimits.builder()
.When the
Consumer
completes,SdkBuilder.build()
is called immediately and its result is passed toresourceLimits(ResourceLimits)
.- Parameters:
resourceLimits
- a consumer that will call methods onResourceLimits.Builder
- Returns:
- Returns a reference to this object so that method calls can be chained together.
- See Also:
resourceLimits(ResourceLimits)
-
parameterRanges
HyperParameterTuningJobConfig.Builder parameterRanges(ParameterRanges parameterRanges)
The ParameterRanges object that specifies the ranges of hyperparameters that this tuning job searches over to find the optimal configuration for the highest model performance against your chosen objective metric.
- Parameters:
parameterRanges
- The ParameterRanges object that specifies the ranges of hyperparameters that this tuning job searches over to find the optimal configuration for the highest model performance against your chosen objective metric.- Returns:
- Returns a reference to this object so that method calls can be chained together.
-
parameterRanges
default HyperParameterTuningJobConfig.Builder parameterRanges(Consumer<ParameterRanges.Builder> parameterRanges)
The ParameterRanges object that specifies the ranges of hyperparameters that this tuning job searches over to find the optimal configuration for the highest model performance against your chosen objective metric.
This is a convenience method that creates an instance of theParameterRanges.Builder
avoiding the need to create one manually viaParameterRanges.builder()
.When the
Consumer
completes,SdkBuilder.build()
is called immediately and its result is passed toparameterRanges(ParameterRanges)
.- Parameters:
parameterRanges
- a consumer that will call methods onParameterRanges.Builder
- Returns:
- Returns a reference to this object so that method calls can be chained together.
- See Also:
parameterRanges(ParameterRanges)
-
trainingJobEarlyStoppingType
HyperParameterTuningJobConfig.Builder trainingJobEarlyStoppingType(String trainingJobEarlyStoppingType)
Specifies whether to use early stopping for training jobs launched by the hyperparameter tuning job. Because the
Hyperband
strategy has its own advanced internal early stopping mechanism,TrainingJobEarlyStoppingType
must beOFF
to useHyperband
. This parameter can take on one of the following values (the default value isOFF
):- OFF
-
Training jobs launched by the hyperparameter tuning job do not use early stopping.
- AUTO
-
SageMaker stops training jobs launched by the hyperparameter tuning job when they are unlikely to perform better than previously completed training jobs. For more information, see Stop Training Jobs Early.
- Parameters:
trainingJobEarlyStoppingType
- Specifies whether to use early stopping for training jobs launched by the hyperparameter tuning job. Because theHyperband
strategy has its own advanced internal early stopping mechanism,TrainingJobEarlyStoppingType
must beOFF
to useHyperband
. This parameter can take on one of the following values (the default value isOFF
):- OFF
-
Training jobs launched by the hyperparameter tuning job do not use early stopping.
- AUTO
-
SageMaker stops training jobs launched by the hyperparameter tuning job when they are unlikely to perform better than previously completed training jobs. For more information, see Stop Training Jobs Early.
- Returns:
- Returns a reference to this object so that method calls can be chained together.
- See Also:
TrainingJobEarlyStoppingType
,TrainingJobEarlyStoppingType
-
trainingJobEarlyStoppingType
HyperParameterTuningJobConfig.Builder trainingJobEarlyStoppingType(TrainingJobEarlyStoppingType trainingJobEarlyStoppingType)
Specifies whether to use early stopping for training jobs launched by the hyperparameter tuning job. Because the
Hyperband
strategy has its own advanced internal early stopping mechanism,TrainingJobEarlyStoppingType
must beOFF
to useHyperband
. This parameter can take on one of the following values (the default value isOFF
):- OFF
-
Training jobs launched by the hyperparameter tuning job do not use early stopping.
- AUTO
-
SageMaker stops training jobs launched by the hyperparameter tuning job when they are unlikely to perform better than previously completed training jobs. For more information, see Stop Training Jobs Early.
- Parameters:
trainingJobEarlyStoppingType
- Specifies whether to use early stopping for training jobs launched by the hyperparameter tuning job. Because theHyperband
strategy has its own advanced internal early stopping mechanism,TrainingJobEarlyStoppingType
must beOFF
to useHyperband
. This parameter can take on one of the following values (the default value isOFF
):- OFF
-
Training jobs launched by the hyperparameter tuning job do not use early stopping.
- AUTO
-
SageMaker stops training jobs launched by the hyperparameter tuning job when they are unlikely to perform better than previously completed training jobs. For more information, see Stop Training Jobs Early.
- Returns:
- Returns a reference to this object so that method calls can be chained together.
- See Also:
TrainingJobEarlyStoppingType
,TrainingJobEarlyStoppingType
-
tuningJobCompletionCriteria
HyperParameterTuningJobConfig.Builder tuningJobCompletionCriteria(TuningJobCompletionCriteria tuningJobCompletionCriteria)
The tuning job's completion criteria.
- Parameters:
tuningJobCompletionCriteria
- The tuning job's completion criteria.- Returns:
- Returns a reference to this object so that method calls can be chained together.
-
tuningJobCompletionCriteria
default HyperParameterTuningJobConfig.Builder tuningJobCompletionCriteria(Consumer<TuningJobCompletionCriteria.Builder> tuningJobCompletionCriteria)
The tuning job's completion criteria.
This is a convenience method that creates an instance of theTuningJobCompletionCriteria.Builder
avoiding the need to create one manually viaTuningJobCompletionCriteria.builder()
.When the
Consumer
completes,SdkBuilder.build()
is called immediately and its result is passed totuningJobCompletionCriteria(TuningJobCompletionCriteria)
.- Parameters:
tuningJobCompletionCriteria
- a consumer that will call methods onTuningJobCompletionCriteria.Builder
- Returns:
- Returns a reference to this object so that method calls can be chained together.
- See Also:
tuningJobCompletionCriteria(TuningJobCompletionCriteria)
-
randomSeed
HyperParameterTuningJobConfig.Builder randomSeed(Integer randomSeed)
A value used to initialize a pseudo-random number generator. Setting a random seed and using the same seed later for the same tuning job will allow hyperparameter optimization to find more a consistent hyperparameter configuration between the two runs.
- Parameters:
randomSeed
- A value used to initialize a pseudo-random number generator. Setting a random seed and using the same seed later for the same tuning job will allow hyperparameter optimization to find more a consistent hyperparameter configuration between the two runs.- Returns:
- Returns a reference to this object so that method calls can be chained together.
-
-