Interface AutoMLCandidateGenerationConfig.Builder
-
- All Superinterfaces:
Buildable
,CopyableBuilder<AutoMLCandidateGenerationConfig.Builder,AutoMLCandidateGenerationConfig>
,SdkBuilder<AutoMLCandidateGenerationConfig.Builder,AutoMLCandidateGenerationConfig>
,SdkPojo
- Enclosing class:
- AutoMLCandidateGenerationConfig
public static interface AutoMLCandidateGenerationConfig.Builder extends SdkPojo, CopyableBuilder<AutoMLCandidateGenerationConfig.Builder,AutoMLCandidateGenerationConfig>
-
-
Method Summary
All Methods Instance Methods Abstract Methods Modifier and Type Method Description AutoMLCandidateGenerationConfig.Builder
algorithmsConfig(Collection<AutoMLAlgorithmConfig> algorithmsConfig)
Stores the configuration information for the selection of algorithms trained on tabular data.AutoMLCandidateGenerationConfig.Builder
algorithmsConfig(Consumer<AutoMLAlgorithmConfig.Builder>... algorithmsConfig)
Stores the configuration information for the selection of algorithms trained on tabular data.AutoMLCandidateGenerationConfig.Builder
algorithmsConfig(AutoMLAlgorithmConfig... algorithmsConfig)
Stores the configuration information for the selection of algorithms trained on tabular data.AutoMLCandidateGenerationConfig.Builder
featureSpecificationS3Uri(String featureSpecificationS3Uri)
A URL to the Amazon S3 data source containing selected features from the input data source to run an Autopilot job.-
Methods inherited from interface software.amazon.awssdk.utils.builder.CopyableBuilder
copy
-
Methods inherited from interface software.amazon.awssdk.utils.builder.SdkBuilder
applyMutation, build
-
Methods inherited from interface software.amazon.awssdk.core.SdkPojo
equalsBySdkFields, sdkFieldNameToField, sdkFields
-
-
-
-
Method Detail
-
featureSpecificationS3Uri
AutoMLCandidateGenerationConfig.Builder featureSpecificationS3Uri(String featureSpecificationS3Uri)
A URL to the Amazon S3 data source containing selected features from the input data source to run an Autopilot job. You can input
FeatureAttributeNames
(optional) in JSON format as shown below:{ "FeatureAttributeNames":["col1", "col2", ...] }
.You can also specify the data type of the feature (optional) in the format shown below:
{ "FeatureDataTypes":{"col1":"numeric", "col2":"categorical" ... } }
These column keys may not include the target column.
In ensembling mode, Autopilot only supports the following data types:
numeric
,categorical
,text
, anddatetime
. In HPO mode, Autopilot can supportnumeric
,categorical
,text
,datetime
, andsequence
.If only
FeatureDataTypes
is provided, the column keys (col1
,col2
,..) should be a subset of the column names in the input data.If both
FeatureDataTypes
andFeatureAttributeNames
are provided, then the column keys should be a subset of the column names provided inFeatureAttributeNames
.The key name
FeatureAttributeNames
is fixed. The values listed in["col1", "col2", ...]
are case sensitive and should be a list of strings containing unique values that are a subset of the column names in the input data. The list of columns provided must not include the target column.- Parameters:
featureSpecificationS3Uri
- A URL to the Amazon S3 data source containing selected features from the input data source to run an Autopilot job. You can inputFeatureAttributeNames
(optional) in JSON format as shown below:{ "FeatureAttributeNames":["col1", "col2", ...] }
.You can also specify the data type of the feature (optional) in the format shown below:
{ "FeatureDataTypes":{"col1":"numeric", "col2":"categorical" ... } }
These column keys may not include the target column.
In ensembling mode, Autopilot only supports the following data types:
numeric
,categorical
,text
, anddatetime
. In HPO mode, Autopilot can supportnumeric
,categorical
,text
,datetime
, andsequence
.If only
FeatureDataTypes
is provided, the column keys (col1
,col2
,..) should be a subset of the column names in the input data.If both
FeatureDataTypes
andFeatureAttributeNames
are provided, then the column keys should be a subset of the column names provided inFeatureAttributeNames
.The key name
FeatureAttributeNames
is fixed. The values listed in["col1", "col2", ...]
are case sensitive and should be a list of strings containing unique values that are a subset of the column names in the input data. The list of columns provided must not include the target column.- Returns:
- Returns a reference to this object so that method calls can be chained together.
-
algorithmsConfig
AutoMLCandidateGenerationConfig.Builder algorithmsConfig(Collection<AutoMLAlgorithmConfig> algorithmsConfig)
Stores the configuration information for the selection of algorithms trained on tabular data.
The list of available algorithms to choose from depends on the training mode set in
TabularJobConfig.Mode
.-
AlgorithmsConfig
should not be set if the training mode is set onAUTO
. -
When
AlgorithmsConfig
is provided, oneAutoMLAlgorithms
attribute must be set and one only.If the list of algorithms provided as values for
AutoMLAlgorithms
is empty,CandidateGenerationConfig
uses the full set of algorithms for the given training mode. -
When
AlgorithmsConfig
is not provided,CandidateGenerationConfig
uses the full set of algorithms for the given training mode.
For the list of all algorithms per problem type and training mode, see AutoMLAlgorithmConfig.
For more information on each algorithm, see the Algorithm support section in Autopilot developer guide.
- Parameters:
algorithmsConfig
- Stores the configuration information for the selection of algorithms trained on tabular data.The list of available algorithms to choose from depends on the training mode set in
TabularJobConfig.Mode
.-
AlgorithmsConfig
should not be set if the training mode is set onAUTO
. -
When
AlgorithmsConfig
is provided, oneAutoMLAlgorithms
attribute must be set and one only.If the list of algorithms provided as values for
AutoMLAlgorithms
is empty,CandidateGenerationConfig
uses the full set of algorithms for the given training mode. -
When
AlgorithmsConfig
is not provided,CandidateGenerationConfig
uses the full set of algorithms for the given training mode.
For the list of all algorithms per problem type and training mode, see AutoMLAlgorithmConfig.
For more information on each algorithm, see the Algorithm support section in Autopilot developer guide.
-
- Returns:
- Returns a reference to this object so that method calls can be chained together.
-
-
algorithmsConfig
AutoMLCandidateGenerationConfig.Builder algorithmsConfig(AutoMLAlgorithmConfig... algorithmsConfig)
Stores the configuration information for the selection of algorithms trained on tabular data.
The list of available algorithms to choose from depends on the training mode set in
TabularJobConfig.Mode
.-
AlgorithmsConfig
should not be set if the training mode is set onAUTO
. -
When
AlgorithmsConfig
is provided, oneAutoMLAlgorithms
attribute must be set and one only.If the list of algorithms provided as values for
AutoMLAlgorithms
is empty,CandidateGenerationConfig
uses the full set of algorithms for the given training mode. -
When
AlgorithmsConfig
is not provided,CandidateGenerationConfig
uses the full set of algorithms for the given training mode.
For the list of all algorithms per problem type and training mode, see AutoMLAlgorithmConfig.
For more information on each algorithm, see the Algorithm support section in Autopilot developer guide.
- Parameters:
algorithmsConfig
- Stores the configuration information for the selection of algorithms trained on tabular data.The list of available algorithms to choose from depends on the training mode set in
TabularJobConfig.Mode
.-
AlgorithmsConfig
should not be set if the training mode is set onAUTO
. -
When
AlgorithmsConfig
is provided, oneAutoMLAlgorithms
attribute must be set and one only.If the list of algorithms provided as values for
AutoMLAlgorithms
is empty,CandidateGenerationConfig
uses the full set of algorithms for the given training mode. -
When
AlgorithmsConfig
is not provided,CandidateGenerationConfig
uses the full set of algorithms for the given training mode.
For the list of all algorithms per problem type and training mode, see AutoMLAlgorithmConfig.
For more information on each algorithm, see the Algorithm support section in Autopilot developer guide.
-
- Returns:
- Returns a reference to this object so that method calls can be chained together.
-
-
algorithmsConfig
AutoMLCandidateGenerationConfig.Builder algorithmsConfig(Consumer<AutoMLAlgorithmConfig.Builder>... algorithmsConfig)
Stores the configuration information for the selection of algorithms trained on tabular data.
The list of available algorithms to choose from depends on the training mode set in
TabularJobConfig.Mode
.-
AlgorithmsConfig
should not be set if the training mode is set onAUTO
. -
When
AlgorithmsConfig
is provided, oneAutoMLAlgorithms
attribute must be set and one only.If the list of algorithms provided as values for
AutoMLAlgorithms
is empty,CandidateGenerationConfig
uses the full set of algorithms for the given training mode. -
When
AlgorithmsConfig
is not provided,CandidateGenerationConfig
uses the full set of algorithms for the given training mode.
For the list of all algorithms per problem type and training mode, see AutoMLAlgorithmConfig.
For more information on each algorithm, see the Algorithm support section in Autopilot developer guide.
This is a convenience method that creates an instance of theAutoMLAlgorithmConfig.Builder
avoiding the need to create one manually viaAutoMLAlgorithmConfig.builder()
.When the
Consumer
completes,SdkBuilder.build()
is called immediately and its result is passed to#algorithmsConfig(List
.) - Parameters:
algorithmsConfig
- a consumer that will call methods onAutoMLAlgorithmConfig.Builder
- Returns:
- Returns a reference to this object so that method calls can be chained together.
- See Also:
#algorithmsConfig(java.util.Collection
)
-
-
-