Class OutputConfig

    • Method Detail

      • s3OutputLocation

        public final String s3OutputLocation()

        Identifies the S3 bucket where you want Amazon SageMaker AI to store the model artifacts. For example, s3://bucket-name/key-name-prefix.

        Returns:
        Identifies the S3 bucket where you want Amazon SageMaker AI to store the model artifacts. For example, s3://bucket-name/key-name-prefix.
      • targetDevice

        public final TargetDevice targetDevice()

        Identifies the target device or the machine learning instance that you want to run your model on after the compilation has completed. Alternatively, you can specify OS, architecture, and accelerator using TargetPlatform fields. It can be used instead of TargetPlatform.

        Currently ml_trn1 is available only in US East (N. Virginia) Region, and ml_inf2 is available only in US East (Ohio) Region.

        If the service returns an enum value that is not available in the current SDK version, targetDevice will return TargetDevice.UNKNOWN_TO_SDK_VERSION. The raw value returned by the service is available from targetDeviceAsString().

        Returns:
        Identifies the target device or the machine learning instance that you want to run your model on after the compilation has completed. Alternatively, you can specify OS, architecture, and accelerator using TargetPlatform fields. It can be used instead of TargetPlatform.

        Currently ml_trn1 is available only in US East (N. Virginia) Region, and ml_inf2 is available only in US East (Ohio) Region.

        See Also:
        TargetDevice
      • targetDeviceAsString

        public final String targetDeviceAsString()

        Identifies the target device or the machine learning instance that you want to run your model on after the compilation has completed. Alternatively, you can specify OS, architecture, and accelerator using TargetPlatform fields. It can be used instead of TargetPlatform.

        Currently ml_trn1 is available only in US East (N. Virginia) Region, and ml_inf2 is available only in US East (Ohio) Region.

        If the service returns an enum value that is not available in the current SDK version, targetDevice will return TargetDevice.UNKNOWN_TO_SDK_VERSION. The raw value returned by the service is available from targetDeviceAsString().

        Returns:
        Identifies the target device or the machine learning instance that you want to run your model on after the compilation has completed. Alternatively, you can specify OS, architecture, and accelerator using TargetPlatform fields. It can be used instead of TargetPlatform.

        Currently ml_trn1 is available only in US East (N. Virginia) Region, and ml_inf2 is available only in US East (Ohio) Region.

        See Also:
        TargetDevice
      • targetPlatform

        public final TargetPlatform targetPlatform()

        Contains information about a target platform that you want your model to run on, such as OS, architecture, and accelerators. It is an alternative of TargetDevice.

        The following examples show how to configure the TargetPlatform and CompilerOptions JSON strings for popular target platforms:

        • Raspberry Pi 3 Model B+

          "TargetPlatform": {"Os": "LINUX", "Arch": "ARM_EABIHF"},

          "CompilerOptions": {'mattr': ['+neon']}

        • Jetson TX2

          "TargetPlatform": {"Os": "LINUX", "Arch": "ARM64", "Accelerator": "NVIDIA"},

          "CompilerOptions": {'gpu-code': 'sm_62', 'trt-ver': '6.0.1', 'cuda-ver': '10.0'}

        • EC2 m5.2xlarge instance OS

          "TargetPlatform": {"Os": "LINUX", "Arch": "X86_64", "Accelerator": "NVIDIA"},

          "CompilerOptions": {'mcpu': 'skylake-avx512'}

        • RK3399

          "TargetPlatform": {"Os": "LINUX", "Arch": "ARM64", "Accelerator": "MALI"}

        • ARMv7 phone (CPU)

          "TargetPlatform": {"Os": "ANDROID", "Arch": "ARM_EABI"},

          "CompilerOptions": {'ANDROID_PLATFORM': 25, 'mattr': ['+neon']}

        • ARMv8 phone (CPU)

          "TargetPlatform": {"Os": "ANDROID", "Arch": "ARM64"},

          "CompilerOptions": {'ANDROID_PLATFORM': 29}

        Returns:
        Contains information about a target platform that you want your model to run on, such as OS, architecture, and accelerators. It is an alternative of TargetDevice.

        The following examples show how to configure the TargetPlatform and CompilerOptions JSON strings for popular target platforms:

        • Raspberry Pi 3 Model B+

          "TargetPlatform": {"Os": "LINUX", "Arch": "ARM_EABIHF"},

          "CompilerOptions": {'mattr': ['+neon']}

        • Jetson TX2

          "TargetPlatform": {"Os": "LINUX", "Arch": "ARM64", "Accelerator": "NVIDIA"},

          "CompilerOptions": {'gpu-code': 'sm_62', 'trt-ver': '6.0.1', 'cuda-ver': '10.0'}

        • EC2 m5.2xlarge instance OS

          "TargetPlatform": {"Os": "LINUX", "Arch": "X86_64", "Accelerator": "NVIDIA"},

          "CompilerOptions": {'mcpu': 'skylake-avx512'}

        • RK3399

          "TargetPlatform": {"Os": "LINUX", "Arch": "ARM64", "Accelerator": "MALI"}

        • ARMv7 phone (CPU)

          "TargetPlatform": {"Os": "ANDROID", "Arch": "ARM_EABI"},

          "CompilerOptions": {'ANDROID_PLATFORM': 25, 'mattr': ['+neon']}

        • ARMv8 phone (CPU)

          "TargetPlatform": {"Os": "ANDROID", "Arch": "ARM64"},

          "CompilerOptions": {'ANDROID_PLATFORM': 29}

      • compilerOptions

        public final String compilerOptions()

        Specifies additional parameters for compiler options in JSON format. The compiler options are TargetPlatform specific. It is required for NVIDIA accelerators and highly recommended for CPU compilations. For any other cases, it is optional to specify CompilerOptions.

        • DTYPE: Specifies the data type for the input. When compiling for ml_* (except for ml_inf) instances using PyTorch framework, provide the data type (dtype) of the model's input. "float32" is used if "DTYPE" is not specified. Options for data type are:

          • float32: Use either "float" or "float32".

          • int64: Use either "int64" or "long".

          For example, {"dtype" : "float32"}.

        • CPU: Compilation for CPU supports the following compiler options.

          • mcpu: CPU micro-architecture. For example, {'mcpu': 'skylake-avx512'}

          • mattr: CPU flags. For example, {'mattr': ['+neon', '+vfpv4']}

        • ARM: Details of ARM CPU compilations.

          • NEON: NEON is an implementation of the Advanced SIMD extension used in ARMv7 processors.

            For example, add {'mattr': ['+neon']} to the compiler options if compiling for ARM 32-bit platform with the NEON support.

        • NVIDIA: Compilation for NVIDIA GPU supports the following compiler options.

          • gpu_code: Specifies the targeted architecture.

          • trt-ver: Specifies the TensorRT versions in x.y.z. format.

          • cuda-ver: Specifies the CUDA version in x.y format.

          For example, {'gpu-code': 'sm_72', 'trt-ver': '6.0.1', 'cuda-ver': '10.1'}

        • ANDROID: Compilation for the Android OS supports the following compiler options:

          • ANDROID_PLATFORM: Specifies the Android API levels. Available levels range from 21 to 29. For example, {'ANDROID_PLATFORM': 28}.

          • mattr: Add {'mattr': ['+neon']} to compiler options if compiling for ARM 32-bit platform with NEON support.

        • INFERENTIA: Compilation for target ml_inf1 uses compiler options passed in as a JSON string. For example, "CompilerOptions": "\"--verbose 1 --num-neuroncores 2 -O2\"".

          For information about supported compiler options, see Neuron Compiler CLI Reference Guide.

        • CoreML: Compilation for the CoreML OutputConfig TargetDevice supports the following compiler options:

          • class_labels: Specifies the classification labels file name inside input tar.gz file. For example, {"class_labels": "imagenet_labels_1000.txt"}. Labels inside the txt file should be separated by newlines.

        Returns:
        Specifies additional parameters for compiler options in JSON format. The compiler options are TargetPlatform specific. It is required for NVIDIA accelerators and highly recommended for CPU compilations. For any other cases, it is optional to specify CompilerOptions.

        • DTYPE: Specifies the data type for the input. When compiling for ml_* (except for ml_inf) instances using PyTorch framework, provide the data type (dtype) of the model's input. "float32" is used if "DTYPE" is not specified. Options for data type are:

          • float32: Use either "float" or "float32".

          • int64: Use either "int64" or "long".

          For example, {"dtype" : "float32"}.

        • CPU: Compilation for CPU supports the following compiler options.

          • mcpu: CPU micro-architecture. For example, {'mcpu': 'skylake-avx512'}

          • mattr: CPU flags. For example, {'mattr': ['+neon', '+vfpv4']}

        • ARM: Details of ARM CPU compilations.

          • NEON: NEON is an implementation of the Advanced SIMD extension used in ARMv7 processors.

            For example, add {'mattr': ['+neon']} to the compiler options if compiling for ARM 32-bit platform with the NEON support.

        • NVIDIA: Compilation for NVIDIA GPU supports the following compiler options.

          • gpu_code: Specifies the targeted architecture.

          • trt-ver: Specifies the TensorRT versions in x.y.z. format.

          • cuda-ver: Specifies the CUDA version in x.y format.

          For example, {'gpu-code': 'sm_72', 'trt-ver': '6.0.1', 'cuda-ver': '10.1'}

        • ANDROID: Compilation for the Android OS supports the following compiler options:

          • ANDROID_PLATFORM: Specifies the Android API levels. Available levels range from 21 to 29. For example, {'ANDROID_PLATFORM': 28}.

          • mattr: Add {'mattr': ['+neon']} to compiler options if compiling for ARM 32-bit platform with NEON support.

        • INFERENTIA: Compilation for target ml_inf1 uses compiler options passed in as a JSON string. For example, "CompilerOptions": "\"--verbose 1 --num-neuroncores 2 -O2\"".

          For information about supported compiler options, see Neuron Compiler CLI Reference Guide.

        • CoreML: Compilation for the CoreML OutputConfig TargetDevice supports the following compiler options:

          • class_labels: Specifies the classification labels file name inside input tar.gz file. For example, {"class_labels": "imagenet_labels_1000.txt"}. Labels inside the txt file should be separated by newlines.

      • kmsKeyId

        public final String kmsKeyId()

        The Amazon Web Services Key Management Service key (Amazon Web Services KMS) that Amazon SageMaker AI uses to encrypt your output models with Amazon S3 server-side encryption after compilation job. If you don't provide a KMS key ID, Amazon SageMaker AI uses the default KMS key for Amazon S3 for your role's account. For more information, see KMS-Managed Encryption Keys in the Amazon Simple Storage Service Developer Guide.

        The KmsKeyId can be any of the following formats:

        • Key ID: 1234abcd-12ab-34cd-56ef-1234567890ab

        • Key ARN: arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

        • Alias name: alias/ExampleAlias

        • Alias name ARN: arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias

        Returns:
        The Amazon Web Services Key Management Service key (Amazon Web Services KMS) that Amazon SageMaker AI uses to encrypt your output models with Amazon S3 server-side encryption after compilation job. If you don't provide a KMS key ID, Amazon SageMaker AI uses the default KMS key for Amazon S3 for your role's account. For more information, see KMS-Managed Encryption Keys in the Amazon Simple Storage Service Developer Guide.

        The KmsKeyId can be any of the following formats:

        • Key ID: 1234abcd-12ab-34cd-56ef-1234567890ab

        • Key ARN: arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

        • Alias name: alias/ExampleAlias

        • Alias name ARN: arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias

      • hashCode

        public final int hashCode()
        Overrides:
        hashCode in class Object
      • equals

        public final boolean equals​(Object obj)
        Overrides:
        equals in class Object
      • toString

        public final String toString()
        Returns a string representation of this object. This is useful for testing and debugging. Sensitive data will be redacted from this string using a placeholder value.
        Overrides:
        toString in class Object
      • getValueForField

        public final <T> Optional<T> getValueForField​(String fieldName,
                                                      Class<T> clazz)