Class DataframeEvaluationRegressionMetrics.Builder
java.lang.Object
co.elastic.clients.util.ObjectBuilderBase
co.elastic.clients.util.WithJsonObjectBuilderBase<DataframeEvaluationRegressionMetrics.Builder>
co.elastic.clients.elasticsearch.ml.DataframeEvaluationRegressionMetrics.Builder
- All Implemented Interfaces:
WithJson<DataframeEvaluationRegressionMetrics.Builder>,ObjectBuilder<DataframeEvaluationRegressionMetrics>
- Enclosing class:
- DataframeEvaluationRegressionMetrics
public static class DataframeEvaluationRegressionMetrics.Builder extends WithJsonObjectBuilderBase<DataframeEvaluationRegressionMetrics.Builder> implements ObjectBuilder<DataframeEvaluationRegressionMetrics>
Builder for
DataframeEvaluationRegressionMetrics.-
Constructor Summary
Constructors Constructor Description Builder() -
Method Summary
Modifier and Type Method Description DataframeEvaluationRegressionMetricsbuild()Builds aDataframeEvaluationRegressionMetrics.DataframeEvaluationRegressionMetrics.Builderhuber(DataframeEvaluationRegressionMetricsHuber value)Pseudo Huber loss function.DataframeEvaluationRegressionMetrics.Builderhuber(java.util.function.Function<DataframeEvaluationRegressionMetricsHuber.Builder,ObjectBuilder<DataframeEvaluationRegressionMetricsHuber>> fn)Pseudo Huber loss function.DataframeEvaluationRegressionMetrics.Buildermse(java.lang.String key, JsonData value)Average squared difference between the predicted values and the actual (ground truth) value.DataframeEvaluationRegressionMetrics.Buildermse(java.util.Map<java.lang.String,JsonData> map)Average squared difference between the predicted values and the actual (ground truth) value.DataframeEvaluationRegressionMetrics.Buildermsle(DataframeEvaluationRegressionMetricsMsle value)Average squared difference between the logarithm of the predicted values and the logarithm of the actual (ground truth) value.DataframeEvaluationRegressionMetrics.Buildermsle(java.util.function.Function<DataframeEvaluationRegressionMetricsMsle.Builder,ObjectBuilder<DataframeEvaluationRegressionMetricsMsle>> fn)Average squared difference between the logarithm of the predicted values and the logarithm of the actual (ground truth) value.DataframeEvaluationRegressionMetrics.BuilderrSquared(java.lang.String key, JsonData value)Proportion of the variance in the dependent variable that is predictable from the independent variables.DataframeEvaluationRegressionMetrics.BuilderrSquared(java.util.Map<java.lang.String,JsonData> map)Proportion of the variance in the dependent variable that is predictable from the independent variables.protected DataframeEvaluationRegressionMetrics.Builderself()Methods inherited from class co.elastic.clients.util.WithJsonObjectBuilderBase
withJsonMethods inherited from class co.elastic.clients.util.ObjectBuilderBase
_checkSingleUse, _listAdd, _listAddAll, _mapPut, _mapPutAllMethods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
-
Constructor Details
-
Builder
public Builder()
-
-
Method Details
-
mse
public final DataframeEvaluationRegressionMetrics.Builder mse(java.util.Map<java.lang.String,JsonData> map)Average squared difference between the predicted values and the actual (ground truth) value. For more information, read this wiki article.API name:
mseAdds all entries of
maptomse. -
mse
public final DataframeEvaluationRegressionMetrics.Builder mse(java.lang.String key, JsonData value)Average squared difference between the predicted values and the actual (ground truth) value. For more information, read this wiki article.API name:
mseAdds an entry to
mse. -
msle
public final DataframeEvaluationRegressionMetrics.Builder msle(@Nullable DataframeEvaluationRegressionMetricsMsle value)Average squared difference between the logarithm of the predicted values and the logarithm of the actual (ground truth) value.API name:
msle -
msle
public final DataframeEvaluationRegressionMetrics.Builder msle(java.util.function.Function<DataframeEvaluationRegressionMetricsMsle.Builder,ObjectBuilder<DataframeEvaluationRegressionMetricsMsle>> fn)Average squared difference between the logarithm of the predicted values and the logarithm of the actual (ground truth) value.API name:
msle -
huber
public final DataframeEvaluationRegressionMetrics.Builder huber(@Nullable DataframeEvaluationRegressionMetricsHuber value)Pseudo Huber loss function.API name:
huber -
huber
public final DataframeEvaluationRegressionMetrics.Builder huber(java.util.function.Function<DataframeEvaluationRegressionMetricsHuber.Builder,ObjectBuilder<DataframeEvaluationRegressionMetricsHuber>> fn)Pseudo Huber loss function.API name:
huber -
rSquared
public final DataframeEvaluationRegressionMetrics.Builder rSquared(java.util.Map<java.lang.String,JsonData> map)Proportion of the variance in the dependent variable that is predictable from the independent variables.API name:
r_squaredAdds all entries of
maptorSquared. -
rSquared
public final DataframeEvaluationRegressionMetrics.Builder rSquared(java.lang.String key, JsonData value)Proportion of the variance in the dependent variable that is predictable from the independent variables.API name:
r_squaredAdds an entry to
rSquared. -
self
- Specified by:
selfin classWithJsonObjectBuilderBase<DataframeEvaluationRegressionMetrics.Builder>
-
build
Builds aDataframeEvaluationRegressionMetrics.- Specified by:
buildin interfaceObjectBuilder<DataframeEvaluationRegressionMetrics>- Throws:
java.lang.NullPointerException- if some of the required fields are null.
-