Class DataframeEvaluationRegressionMetrics
java.lang.Object
co.elastic.clients.elasticsearch.ml.DataframeEvaluationRegressionMetrics
- All Implemented Interfaces:
JsonpSerializable
@JsonpDeserializable public class DataframeEvaluationRegressionMetrics extends java.lang.Object implements JsonpSerializable
- See Also:
- API specification
-
Nested Class Summary
Nested Classes Modifier and Type Class Description static classDataframeEvaluationRegressionMetrics.BuilderBuilder forDataframeEvaluationRegressionMetrics. -
Field Summary
Fields Modifier and Type Field Description static JsonpDeserializer<DataframeEvaluationRegressionMetrics>_DESERIALIZERJson deserializer forDataframeEvaluationRegressionMetrics -
Method Summary
Modifier and Type Method Description DataframeEvaluationRegressionMetricsHuberhuber()Pseudo Huber loss function.java.util.Map<java.lang.String,JsonData>mse()Average squared difference between the predicted values and the actual (ground truth) value.DataframeEvaluationRegressionMetricsMslemsle()Average squared difference between the logarithm of the predicted values and the logarithm of the actual (ground truth) value.static DataframeEvaluationRegressionMetricsof(java.util.function.Function<DataframeEvaluationRegressionMetrics.Builder,ObjectBuilder<DataframeEvaluationRegressionMetrics>> fn)java.util.Map<java.lang.String,JsonData>rSquared()Proportion of the variance in the dependent variable that is predictable from the independent variables.voidserialize(jakarta.json.stream.JsonGenerator generator, JsonpMapper mapper)Serialize this object to JSON.protected voidserializeInternal(jakarta.json.stream.JsonGenerator generator, JsonpMapper mapper)protected static voidsetupDataframeEvaluationRegressionMetricsDeserializer(ObjectDeserializer<DataframeEvaluationRegressionMetrics.Builder> op)java.lang.StringtoString()Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait
-
Field Details
-
_DESERIALIZER
Json deserializer forDataframeEvaluationRegressionMetrics
-
-
Method Details
-
of
public static DataframeEvaluationRegressionMetrics of(java.util.function.Function<DataframeEvaluationRegressionMetrics.Builder,ObjectBuilder<DataframeEvaluationRegressionMetrics>> fn) -
mse
Average squared difference between the predicted values and the actual (ground truth) value. For more information, read this wiki article.API name:
mse -
msle
Average squared difference between the logarithm of the predicted values and the logarithm of the actual (ground truth) value.API name:
msle -
huber
Pseudo Huber loss function.API name:
huber -
rSquared
Proportion of the variance in the dependent variable that is predictable from the independent variables.API name:
r_squared -
serialize
Serialize this object to JSON.- Specified by:
serializein interfaceJsonpSerializable
-
serializeInternal
-
toString
public java.lang.String toString()- Overrides:
toStringin classjava.lang.Object
-
setupDataframeEvaluationRegressionMetricsDeserializer
protected static void setupDataframeEvaluationRegressionMetricsDeserializer(ObjectDeserializer<DataframeEvaluationRegressionMetrics.Builder> op)
-