Package com.google.protobuf
Class DescriptorProtos.SourceCodeInfo.Builder
- java.lang.Object
-
- com.google.protobuf.AbstractMessageLite.Builder
-
- com.google.protobuf.AbstractMessage.Builder<BuilderT>
-
- com.google.protobuf.GeneratedMessageV3.Builder<DescriptorProtos.SourceCodeInfo.Builder>
-
- com.google.protobuf.DescriptorProtos.SourceCodeInfo.Builder
-
- All Implemented Interfaces:
DescriptorProtos.SourceCodeInfoOrBuilder,com.google.protobuf.Message.Builder,com.google.protobuf.MessageLite.Builder,com.google.protobuf.MessageLiteOrBuilder,com.google.protobuf.MessageOrBuilder,java.lang.Cloneable
- Enclosing class:
- DescriptorProtos.SourceCodeInfo
public static final class DescriptorProtos.SourceCodeInfo.Builder extends com.google.protobuf.GeneratedMessageV3.Builder<DescriptorProtos.SourceCodeInfo.Builder> implements DescriptorProtos.SourceCodeInfoOrBuilder
Encapsulates information about the original source file from which a FileDescriptorProto was generated.
Protobuf typegoogle.protobuf.SourceCodeInfo
-
-
Method Summary
All Methods Static Methods Instance Methods Concrete Methods Modifier and Type Method Description DescriptorProtos.SourceCodeInfo.BuilderaddAllLocation(java.lang.Iterable<? extends DescriptorProtos.SourceCodeInfo.Location> values)A Location identifies a piece of source code in a .proto file which corresponds to a particular definition.DescriptorProtos.SourceCodeInfo.BuilderaddLocation(int index, DescriptorProtos.SourceCodeInfo.Location value)A Location identifies a piece of source code in a .proto file which corresponds to a particular definition.DescriptorProtos.SourceCodeInfo.BuilderaddLocation(int index, DescriptorProtos.SourceCodeInfo.Location.Builder builderForValue)A Location identifies a piece of source code in a .proto file which corresponds to a particular definition.DescriptorProtos.SourceCodeInfo.BuilderaddLocation(DescriptorProtos.SourceCodeInfo.Location value)A Location identifies a piece of source code in a .proto file which corresponds to a particular definition.DescriptorProtos.SourceCodeInfo.BuilderaddLocation(DescriptorProtos.SourceCodeInfo.Location.Builder builderForValue)A Location identifies a piece of source code in a .proto file which corresponds to a particular definition.DescriptorProtos.SourceCodeInfo.Location.BuilderaddLocationBuilder()A Location identifies a piece of source code in a .proto file which corresponds to a particular definition.DescriptorProtos.SourceCodeInfo.Location.BuilderaddLocationBuilder(int index)A Location identifies a piece of source code in a .proto file which corresponds to a particular definition.DescriptorProtos.SourceCodeInfo.BuilderaddRepeatedField(com.google.protobuf.Descriptors.FieldDescriptor field, java.lang.Object value)DescriptorProtos.SourceCodeInfobuild()DescriptorProtos.SourceCodeInfobuildPartial()DescriptorProtos.SourceCodeInfo.Builderclear()DescriptorProtos.SourceCodeInfo.BuilderclearField(com.google.protobuf.Descriptors.FieldDescriptor field)DescriptorProtos.SourceCodeInfo.BuilderclearLocation()A Location identifies a piece of source code in a .proto file which corresponds to a particular definition.DescriptorProtos.SourceCodeInfo.BuilderclearOneof(com.google.protobuf.Descriptors.OneofDescriptor oneof)DescriptorProtos.SourceCodeInfo.Builderclone()DescriptorProtos.SourceCodeInfogetDefaultInstanceForType()static com.google.protobuf.Descriptors.DescriptorgetDescriptor()com.google.protobuf.Descriptors.DescriptorgetDescriptorForType()DescriptorProtos.SourceCodeInfo.LocationgetLocation(int index)A Location identifies a piece of source code in a .proto file which corresponds to a particular definition.DescriptorProtos.SourceCodeInfo.Location.BuildergetLocationBuilder(int index)A Location identifies a piece of source code in a .proto file which corresponds to a particular definition.java.util.List<DescriptorProtos.SourceCodeInfo.Location.Builder>getLocationBuilderList()A Location identifies a piece of source code in a .proto file which corresponds to a particular definition.intgetLocationCount()A Location identifies a piece of source code in a .proto file which corresponds to a particular definition.java.util.List<DescriptorProtos.SourceCodeInfo.Location>getLocationList()A Location identifies a piece of source code in a .proto file which corresponds to a particular definition.DescriptorProtos.SourceCodeInfo.LocationOrBuildergetLocationOrBuilder(int index)A Location identifies a piece of source code in a .proto file which corresponds to a particular definition.java.util.List<? extends DescriptorProtos.SourceCodeInfo.LocationOrBuilder>getLocationOrBuilderList()A Location identifies a piece of source code in a .proto file which corresponds to a particular definition.protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTableinternalGetFieldAccessorTable()booleanisInitialized()DescriptorProtos.SourceCodeInfo.BuildermergeFrom(com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry)DescriptorProtos.SourceCodeInfo.BuildermergeFrom(DescriptorProtos.SourceCodeInfo other)DescriptorProtos.SourceCodeInfo.BuildermergeFrom(com.google.protobuf.Message other)DescriptorProtos.SourceCodeInfo.BuildermergeUnknownFields(com.google.protobuf.UnknownFieldSet unknownFields)DescriptorProtos.SourceCodeInfo.BuilderremoveLocation(int index)A Location identifies a piece of source code in a .proto file which corresponds to a particular definition.DescriptorProtos.SourceCodeInfo.BuildersetField(com.google.protobuf.Descriptors.FieldDescriptor field, java.lang.Object value)DescriptorProtos.SourceCodeInfo.BuildersetLocation(int index, DescriptorProtos.SourceCodeInfo.Location value)A Location identifies a piece of source code in a .proto file which corresponds to a particular definition.DescriptorProtos.SourceCodeInfo.BuildersetLocation(int index, DescriptorProtos.SourceCodeInfo.Location.Builder builderForValue)A Location identifies a piece of source code in a .proto file which corresponds to a particular definition.DescriptorProtos.SourceCodeInfo.BuildersetRepeatedField(com.google.protobuf.Descriptors.FieldDescriptor field, int index, java.lang.Object value)DescriptorProtos.SourceCodeInfo.BuildersetUnknownFields(com.google.protobuf.UnknownFieldSet unknownFields)-
Methods inherited from class com.google.protobuf.GeneratedMessageV3.Builder
getAllFields, getField, getFieldBuilder, getOneofFieldDescriptor, getParentForChildren, getRepeatedField, getRepeatedFieldBuilder, getRepeatedFieldCount, getUnknownFields, getUnknownFieldSetBuilder, hasField, hasOneof, internalGetMapField, internalGetMutableMapField, isClean, markClean, mergeUnknownLengthDelimitedField, mergeUnknownVarintField, newBuilderForField, onBuilt, onChanged, parseUnknownField, setUnknownFieldSetBuilder, setUnknownFieldsProto3
-
Methods inherited from class com.google.protobuf.AbstractMessage.Builder
findInitializationErrors, getInitializationErrorString, internalMergeFrom, mergeFrom, mergeFrom, mergeFrom, mergeFrom, mergeFrom, mergeFrom, mergeFrom, mergeFrom, mergeFrom, newUninitializedMessageException, toString
-
Methods inherited from class com.google.protobuf.AbstractMessageLite.Builder
addAll, addAll, mergeDelimitedFrom, mergeDelimitedFrom, mergeFrom, newUninitializedMessageException
-
Methods inherited from class java.lang.Object
equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait
-
-
-
-
Method Detail
-
getDescriptor
public static final com.google.protobuf.Descriptors.Descriptor getDescriptor()
-
internalGetFieldAccessorTable
protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable()
- Specified by:
internalGetFieldAccessorTablein classcom.google.protobuf.GeneratedMessageV3.Builder<DescriptorProtos.SourceCodeInfo.Builder>
-
clear
public DescriptorProtos.SourceCodeInfo.Builder clear()
- Specified by:
clearin interfacecom.google.protobuf.Message.Builder- Specified by:
clearin interfacecom.google.protobuf.MessageLite.Builder- Overrides:
clearin classcom.google.protobuf.GeneratedMessageV3.Builder<DescriptorProtos.SourceCodeInfo.Builder>
-
getDescriptorForType
public com.google.protobuf.Descriptors.Descriptor getDescriptorForType()
- Specified by:
getDescriptorForTypein interfacecom.google.protobuf.Message.Builder- Specified by:
getDescriptorForTypein interfacecom.google.protobuf.MessageOrBuilder- Overrides:
getDescriptorForTypein classcom.google.protobuf.GeneratedMessageV3.Builder<DescriptorProtos.SourceCodeInfo.Builder>
-
getDefaultInstanceForType
public DescriptorProtos.SourceCodeInfo getDefaultInstanceForType()
- Specified by:
getDefaultInstanceForTypein interfacecom.google.protobuf.MessageLiteOrBuilder- Specified by:
getDefaultInstanceForTypein interfacecom.google.protobuf.MessageOrBuilder
-
build
public DescriptorProtos.SourceCodeInfo build()
- Specified by:
buildin interfacecom.google.protobuf.Message.Builder- Specified by:
buildin interfacecom.google.protobuf.MessageLite.Builder
-
buildPartial
public DescriptorProtos.SourceCodeInfo buildPartial()
- Specified by:
buildPartialin interfacecom.google.protobuf.Message.Builder- Specified by:
buildPartialin interfacecom.google.protobuf.MessageLite.Builder
-
clone
public DescriptorProtos.SourceCodeInfo.Builder clone()
- Specified by:
clonein interfacecom.google.protobuf.Message.Builder- Specified by:
clonein interfacecom.google.protobuf.MessageLite.Builder- Overrides:
clonein classcom.google.protobuf.GeneratedMessageV3.Builder<DescriptorProtos.SourceCodeInfo.Builder>
-
setField
public DescriptorProtos.SourceCodeInfo.Builder setField(com.google.protobuf.Descriptors.FieldDescriptor field, java.lang.Object value)
- Specified by:
setFieldin interfacecom.google.protobuf.Message.Builder- Overrides:
setFieldin classcom.google.protobuf.GeneratedMessageV3.Builder<DescriptorProtos.SourceCodeInfo.Builder>
-
clearField
public DescriptorProtos.SourceCodeInfo.Builder clearField(com.google.protobuf.Descriptors.FieldDescriptor field)
- Specified by:
clearFieldin interfacecom.google.protobuf.Message.Builder- Overrides:
clearFieldin classcom.google.protobuf.GeneratedMessageV3.Builder<DescriptorProtos.SourceCodeInfo.Builder>
-
clearOneof
public DescriptorProtos.SourceCodeInfo.Builder clearOneof(com.google.protobuf.Descriptors.OneofDescriptor oneof)
- Specified by:
clearOneofin interfacecom.google.protobuf.Message.Builder- Overrides:
clearOneofin classcom.google.protobuf.GeneratedMessageV3.Builder<DescriptorProtos.SourceCodeInfo.Builder>
-
setRepeatedField
public DescriptorProtos.SourceCodeInfo.Builder setRepeatedField(com.google.protobuf.Descriptors.FieldDescriptor field, int index, java.lang.Object value)
- Specified by:
setRepeatedFieldin interfacecom.google.protobuf.Message.Builder- Overrides:
setRepeatedFieldin classcom.google.protobuf.GeneratedMessageV3.Builder<DescriptorProtos.SourceCodeInfo.Builder>
-
addRepeatedField
public DescriptorProtos.SourceCodeInfo.Builder addRepeatedField(com.google.protobuf.Descriptors.FieldDescriptor field, java.lang.Object value)
- Specified by:
addRepeatedFieldin interfacecom.google.protobuf.Message.Builder- Overrides:
addRepeatedFieldin classcom.google.protobuf.GeneratedMessageV3.Builder<DescriptorProtos.SourceCodeInfo.Builder>
-
mergeFrom
public DescriptorProtos.SourceCodeInfo.Builder mergeFrom(com.google.protobuf.Message other)
- Specified by:
mergeFromin interfacecom.google.protobuf.Message.Builder- Overrides:
mergeFromin classcom.google.protobuf.AbstractMessage.Builder<DescriptorProtos.SourceCodeInfo.Builder>
-
mergeFrom
public DescriptorProtos.SourceCodeInfo.Builder mergeFrom(DescriptorProtos.SourceCodeInfo other)
-
isInitialized
public final boolean isInitialized()
- Specified by:
isInitializedin interfacecom.google.protobuf.MessageLiteOrBuilder- Overrides:
isInitializedin classcom.google.protobuf.GeneratedMessageV3.Builder<DescriptorProtos.SourceCodeInfo.Builder>
-
mergeFrom
public DescriptorProtos.SourceCodeInfo.Builder mergeFrom(com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException
- Specified by:
mergeFromin interfacecom.google.protobuf.Message.Builder- Specified by:
mergeFromin interfacecom.google.protobuf.MessageLite.Builder- Overrides:
mergeFromin classcom.google.protobuf.AbstractMessage.Builder<DescriptorProtos.SourceCodeInfo.Builder>- Throws:
java.io.IOException
-
getLocationList
public java.util.List<DescriptorProtos.SourceCodeInfo.Location> getLocationList()
A Location identifies a piece of source code in a .proto file which corresponds to a particular definition. This information is intended to be useful to IDEs, code indexers, documentation generators, and similar tools. For example, say we have a file like: message Foo { optional string foo = 1; } Let's look at just the field definition: optional string foo = 1; ^ ^^ ^^ ^ ^^^ a bc de f ghi We have the following locations: span path represents [a,i) [ 4, 0, 2, 0 ] The whole field definition. [a,b) [ 4, 0, 2, 0, 4 ] The label (optional). [c,d) [ 4, 0, 2, 0, 5 ] The type (string). [e,f) [ 4, 0, 2, 0, 1 ] The name (foo). [g,h) [ 4, 0, 2, 0, 3 ] The number (1). Notes: - A location may refer to a repeated field itself (i.e. not to any particular index within it). This is used whenever a set of elements are logically enclosed in a single code segment. For example, an entire extend block (possibly containing multiple extension definitions) will have an outer location whose path refers to the "extensions" repeated field without an index. - Multiple locations may have the same path. This happens when a single logical declaration is spread out across multiple places. The most obvious example is the "extend" block again -- there may be multiple extend blocks in the same scope, each of which will have the same path. - A location's span is not always a subset of its parent's span. For example, the "extendee" of an extension declaration appears at the beginning of the "extend" block and is shared by all extensions within the block. - Just because a location's span is a subset of some other location's span does not mean that it is a descendant. For example, a "group" defines both a type and a field in a single declaration. Thus, the locations corresponding to the type and field and their components will overlap. - Code which tries to interpret locations should probably be designed to ignore those that it doesn't understand, as more types of locations could be recorded in the future.repeated .google.protobuf.SourceCodeInfo.Location location = 1;- Specified by:
getLocationListin interfaceDescriptorProtos.SourceCodeInfoOrBuilder
-
getLocationCount
public int getLocationCount()
A Location identifies a piece of source code in a .proto file which corresponds to a particular definition. This information is intended to be useful to IDEs, code indexers, documentation generators, and similar tools. For example, say we have a file like: message Foo { optional string foo = 1; } Let's look at just the field definition: optional string foo = 1; ^ ^^ ^^ ^ ^^^ a bc de f ghi We have the following locations: span path represents [a,i) [ 4, 0, 2, 0 ] The whole field definition. [a,b) [ 4, 0, 2, 0, 4 ] The label (optional). [c,d) [ 4, 0, 2, 0, 5 ] The type (string). [e,f) [ 4, 0, 2, 0, 1 ] The name (foo). [g,h) [ 4, 0, 2, 0, 3 ] The number (1). Notes: - A location may refer to a repeated field itself (i.e. not to any particular index within it). This is used whenever a set of elements are logically enclosed in a single code segment. For example, an entire extend block (possibly containing multiple extension definitions) will have an outer location whose path refers to the "extensions" repeated field without an index. - Multiple locations may have the same path. This happens when a single logical declaration is spread out across multiple places. The most obvious example is the "extend" block again -- there may be multiple extend blocks in the same scope, each of which will have the same path. - A location's span is not always a subset of its parent's span. For example, the "extendee" of an extension declaration appears at the beginning of the "extend" block and is shared by all extensions within the block. - Just because a location's span is a subset of some other location's span does not mean that it is a descendant. For example, a "group" defines both a type and a field in a single declaration. Thus, the locations corresponding to the type and field and their components will overlap. - Code which tries to interpret locations should probably be designed to ignore those that it doesn't understand, as more types of locations could be recorded in the future.repeated .google.protobuf.SourceCodeInfo.Location location = 1;- Specified by:
getLocationCountin interfaceDescriptorProtos.SourceCodeInfoOrBuilder
-
getLocation
public DescriptorProtos.SourceCodeInfo.Location getLocation(int index)
A Location identifies a piece of source code in a .proto file which corresponds to a particular definition. This information is intended to be useful to IDEs, code indexers, documentation generators, and similar tools. For example, say we have a file like: message Foo { optional string foo = 1; } Let's look at just the field definition: optional string foo = 1; ^ ^^ ^^ ^ ^^^ a bc de f ghi We have the following locations: span path represents [a,i) [ 4, 0, 2, 0 ] The whole field definition. [a,b) [ 4, 0, 2, 0, 4 ] The label (optional). [c,d) [ 4, 0, 2, 0, 5 ] The type (string). [e,f) [ 4, 0, 2, 0, 1 ] The name (foo). [g,h) [ 4, 0, 2, 0, 3 ] The number (1). Notes: - A location may refer to a repeated field itself (i.e. not to any particular index within it). This is used whenever a set of elements are logically enclosed in a single code segment. For example, an entire extend block (possibly containing multiple extension definitions) will have an outer location whose path refers to the "extensions" repeated field without an index. - Multiple locations may have the same path. This happens when a single logical declaration is spread out across multiple places. The most obvious example is the "extend" block again -- there may be multiple extend blocks in the same scope, each of which will have the same path. - A location's span is not always a subset of its parent's span. For example, the "extendee" of an extension declaration appears at the beginning of the "extend" block and is shared by all extensions within the block. - Just because a location's span is a subset of some other location's span does not mean that it is a descendant. For example, a "group" defines both a type and a field in a single declaration. Thus, the locations corresponding to the type and field and their components will overlap. - Code which tries to interpret locations should probably be designed to ignore those that it doesn't understand, as more types of locations could be recorded in the future.repeated .google.protobuf.SourceCodeInfo.Location location = 1;- Specified by:
getLocationin interfaceDescriptorProtos.SourceCodeInfoOrBuilder
-
setLocation
public DescriptorProtos.SourceCodeInfo.Builder setLocation(int index, DescriptorProtos.SourceCodeInfo.Location value)
A Location identifies a piece of source code in a .proto file which corresponds to a particular definition. This information is intended to be useful to IDEs, code indexers, documentation generators, and similar tools. For example, say we have a file like: message Foo { optional string foo = 1; } Let's look at just the field definition: optional string foo = 1; ^ ^^ ^^ ^ ^^^ a bc de f ghi We have the following locations: span path represents [a,i) [ 4, 0, 2, 0 ] The whole field definition. [a,b) [ 4, 0, 2, 0, 4 ] The label (optional). [c,d) [ 4, 0, 2, 0, 5 ] The type (string). [e,f) [ 4, 0, 2, 0, 1 ] The name (foo). [g,h) [ 4, 0, 2, 0, 3 ] The number (1). Notes: - A location may refer to a repeated field itself (i.e. not to any particular index within it). This is used whenever a set of elements are logically enclosed in a single code segment. For example, an entire extend block (possibly containing multiple extension definitions) will have an outer location whose path refers to the "extensions" repeated field without an index. - Multiple locations may have the same path. This happens when a single logical declaration is spread out across multiple places. The most obvious example is the "extend" block again -- there may be multiple extend blocks in the same scope, each of which will have the same path. - A location's span is not always a subset of its parent's span. For example, the "extendee" of an extension declaration appears at the beginning of the "extend" block and is shared by all extensions within the block. - Just because a location's span is a subset of some other location's span does not mean that it is a descendant. For example, a "group" defines both a type and a field in a single declaration. Thus, the locations corresponding to the type and field and their components will overlap. - Code which tries to interpret locations should probably be designed to ignore those that it doesn't understand, as more types of locations could be recorded in the future.repeated .google.protobuf.SourceCodeInfo.Location location = 1;
-
setLocation
public DescriptorProtos.SourceCodeInfo.Builder setLocation(int index, DescriptorProtos.SourceCodeInfo.Location.Builder builderForValue)
A Location identifies a piece of source code in a .proto file which corresponds to a particular definition. This information is intended to be useful to IDEs, code indexers, documentation generators, and similar tools. For example, say we have a file like: message Foo { optional string foo = 1; } Let's look at just the field definition: optional string foo = 1; ^ ^^ ^^ ^ ^^^ a bc de f ghi We have the following locations: span path represents [a,i) [ 4, 0, 2, 0 ] The whole field definition. [a,b) [ 4, 0, 2, 0, 4 ] The label (optional). [c,d) [ 4, 0, 2, 0, 5 ] The type (string). [e,f) [ 4, 0, 2, 0, 1 ] The name (foo). [g,h) [ 4, 0, 2, 0, 3 ] The number (1). Notes: - A location may refer to a repeated field itself (i.e. not to any particular index within it). This is used whenever a set of elements are logically enclosed in a single code segment. For example, an entire extend block (possibly containing multiple extension definitions) will have an outer location whose path refers to the "extensions" repeated field without an index. - Multiple locations may have the same path. This happens when a single logical declaration is spread out across multiple places. The most obvious example is the "extend" block again -- there may be multiple extend blocks in the same scope, each of which will have the same path. - A location's span is not always a subset of its parent's span. For example, the "extendee" of an extension declaration appears at the beginning of the "extend" block and is shared by all extensions within the block. - Just because a location's span is a subset of some other location's span does not mean that it is a descendant. For example, a "group" defines both a type and a field in a single declaration. Thus, the locations corresponding to the type and field and their components will overlap. - Code which tries to interpret locations should probably be designed to ignore those that it doesn't understand, as more types of locations could be recorded in the future.repeated .google.protobuf.SourceCodeInfo.Location location = 1;
-
addLocation
public DescriptorProtos.SourceCodeInfo.Builder addLocation(DescriptorProtos.SourceCodeInfo.Location value)
A Location identifies a piece of source code in a .proto file which corresponds to a particular definition. This information is intended to be useful to IDEs, code indexers, documentation generators, and similar tools. For example, say we have a file like: message Foo { optional string foo = 1; } Let's look at just the field definition: optional string foo = 1; ^ ^^ ^^ ^ ^^^ a bc de f ghi We have the following locations: span path represents [a,i) [ 4, 0, 2, 0 ] The whole field definition. [a,b) [ 4, 0, 2, 0, 4 ] The label (optional). [c,d) [ 4, 0, 2, 0, 5 ] The type (string). [e,f) [ 4, 0, 2, 0, 1 ] The name (foo). [g,h) [ 4, 0, 2, 0, 3 ] The number (1). Notes: - A location may refer to a repeated field itself (i.e. not to any particular index within it). This is used whenever a set of elements are logically enclosed in a single code segment. For example, an entire extend block (possibly containing multiple extension definitions) will have an outer location whose path refers to the "extensions" repeated field without an index. - Multiple locations may have the same path. This happens when a single logical declaration is spread out across multiple places. The most obvious example is the "extend" block again -- there may be multiple extend blocks in the same scope, each of which will have the same path. - A location's span is not always a subset of its parent's span. For example, the "extendee" of an extension declaration appears at the beginning of the "extend" block and is shared by all extensions within the block. - Just because a location's span is a subset of some other location's span does not mean that it is a descendant. For example, a "group" defines both a type and a field in a single declaration. Thus, the locations corresponding to the type and field and their components will overlap. - Code which tries to interpret locations should probably be designed to ignore those that it doesn't understand, as more types of locations could be recorded in the future.repeated .google.protobuf.SourceCodeInfo.Location location = 1;
-
addLocation
public DescriptorProtos.SourceCodeInfo.Builder addLocation(int index, DescriptorProtos.SourceCodeInfo.Location value)
A Location identifies a piece of source code in a .proto file which corresponds to a particular definition. This information is intended to be useful to IDEs, code indexers, documentation generators, and similar tools. For example, say we have a file like: message Foo { optional string foo = 1; } Let's look at just the field definition: optional string foo = 1; ^ ^^ ^^ ^ ^^^ a bc de f ghi We have the following locations: span path represents [a,i) [ 4, 0, 2, 0 ] The whole field definition. [a,b) [ 4, 0, 2, 0, 4 ] The label (optional). [c,d) [ 4, 0, 2, 0, 5 ] The type (string). [e,f) [ 4, 0, 2, 0, 1 ] The name (foo). [g,h) [ 4, 0, 2, 0, 3 ] The number (1). Notes: - A location may refer to a repeated field itself (i.e. not to any particular index within it). This is used whenever a set of elements are logically enclosed in a single code segment. For example, an entire extend block (possibly containing multiple extension definitions) will have an outer location whose path refers to the "extensions" repeated field without an index. - Multiple locations may have the same path. This happens when a single logical declaration is spread out across multiple places. The most obvious example is the "extend" block again -- there may be multiple extend blocks in the same scope, each of which will have the same path. - A location's span is not always a subset of its parent's span. For example, the "extendee" of an extension declaration appears at the beginning of the "extend" block and is shared by all extensions within the block. - Just because a location's span is a subset of some other location's span does not mean that it is a descendant. For example, a "group" defines both a type and a field in a single declaration. Thus, the locations corresponding to the type and field and their components will overlap. - Code which tries to interpret locations should probably be designed to ignore those that it doesn't understand, as more types of locations could be recorded in the future.repeated .google.protobuf.SourceCodeInfo.Location location = 1;
-
addLocation
public DescriptorProtos.SourceCodeInfo.Builder addLocation(DescriptorProtos.SourceCodeInfo.Location.Builder builderForValue)
A Location identifies a piece of source code in a .proto file which corresponds to a particular definition. This information is intended to be useful to IDEs, code indexers, documentation generators, and similar tools. For example, say we have a file like: message Foo { optional string foo = 1; } Let's look at just the field definition: optional string foo = 1; ^ ^^ ^^ ^ ^^^ a bc de f ghi We have the following locations: span path represents [a,i) [ 4, 0, 2, 0 ] The whole field definition. [a,b) [ 4, 0, 2, 0, 4 ] The label (optional). [c,d) [ 4, 0, 2, 0, 5 ] The type (string). [e,f) [ 4, 0, 2, 0, 1 ] The name (foo). [g,h) [ 4, 0, 2, 0, 3 ] The number (1). Notes: - A location may refer to a repeated field itself (i.e. not to any particular index within it). This is used whenever a set of elements are logically enclosed in a single code segment. For example, an entire extend block (possibly containing multiple extension definitions) will have an outer location whose path refers to the "extensions" repeated field without an index. - Multiple locations may have the same path. This happens when a single logical declaration is spread out across multiple places. The most obvious example is the "extend" block again -- there may be multiple extend blocks in the same scope, each of which will have the same path. - A location's span is not always a subset of its parent's span. For example, the "extendee" of an extension declaration appears at the beginning of the "extend" block and is shared by all extensions within the block. - Just because a location's span is a subset of some other location's span does not mean that it is a descendant. For example, a "group" defines both a type and a field in a single declaration. Thus, the locations corresponding to the type and field and their components will overlap. - Code which tries to interpret locations should probably be designed to ignore those that it doesn't understand, as more types of locations could be recorded in the future.repeated .google.protobuf.SourceCodeInfo.Location location = 1;
-
addLocation
public DescriptorProtos.SourceCodeInfo.Builder addLocation(int index, DescriptorProtos.SourceCodeInfo.Location.Builder builderForValue)
A Location identifies a piece of source code in a .proto file which corresponds to a particular definition. This information is intended to be useful to IDEs, code indexers, documentation generators, and similar tools. For example, say we have a file like: message Foo { optional string foo = 1; } Let's look at just the field definition: optional string foo = 1; ^ ^^ ^^ ^ ^^^ a bc de f ghi We have the following locations: span path represents [a,i) [ 4, 0, 2, 0 ] The whole field definition. [a,b) [ 4, 0, 2, 0, 4 ] The label (optional). [c,d) [ 4, 0, 2, 0, 5 ] The type (string). [e,f) [ 4, 0, 2, 0, 1 ] The name (foo). [g,h) [ 4, 0, 2, 0, 3 ] The number (1). Notes: - A location may refer to a repeated field itself (i.e. not to any particular index within it). This is used whenever a set of elements are logically enclosed in a single code segment. For example, an entire extend block (possibly containing multiple extension definitions) will have an outer location whose path refers to the "extensions" repeated field without an index. - Multiple locations may have the same path. This happens when a single logical declaration is spread out across multiple places. The most obvious example is the "extend" block again -- there may be multiple extend blocks in the same scope, each of which will have the same path. - A location's span is not always a subset of its parent's span. For example, the "extendee" of an extension declaration appears at the beginning of the "extend" block and is shared by all extensions within the block. - Just because a location's span is a subset of some other location's span does not mean that it is a descendant. For example, a "group" defines both a type and a field in a single declaration. Thus, the locations corresponding to the type and field and their components will overlap. - Code which tries to interpret locations should probably be designed to ignore those that it doesn't understand, as more types of locations could be recorded in the future.repeated .google.protobuf.SourceCodeInfo.Location location = 1;
-
addAllLocation
public DescriptorProtos.SourceCodeInfo.Builder addAllLocation(java.lang.Iterable<? extends DescriptorProtos.SourceCodeInfo.Location> values)
A Location identifies a piece of source code in a .proto file which corresponds to a particular definition. This information is intended to be useful to IDEs, code indexers, documentation generators, and similar tools. For example, say we have a file like: message Foo { optional string foo = 1; } Let's look at just the field definition: optional string foo = 1; ^ ^^ ^^ ^ ^^^ a bc de f ghi We have the following locations: span path represents [a,i) [ 4, 0, 2, 0 ] The whole field definition. [a,b) [ 4, 0, 2, 0, 4 ] The label (optional). [c,d) [ 4, 0, 2, 0, 5 ] The type (string). [e,f) [ 4, 0, 2, 0, 1 ] The name (foo). [g,h) [ 4, 0, 2, 0, 3 ] The number (1). Notes: - A location may refer to a repeated field itself (i.e. not to any particular index within it). This is used whenever a set of elements are logically enclosed in a single code segment. For example, an entire extend block (possibly containing multiple extension definitions) will have an outer location whose path refers to the "extensions" repeated field without an index. - Multiple locations may have the same path. This happens when a single logical declaration is spread out across multiple places. The most obvious example is the "extend" block again -- there may be multiple extend blocks in the same scope, each of which will have the same path. - A location's span is not always a subset of its parent's span. For example, the "extendee" of an extension declaration appears at the beginning of the "extend" block and is shared by all extensions within the block. - Just because a location's span is a subset of some other location's span does not mean that it is a descendant. For example, a "group" defines both a type and a field in a single declaration. Thus, the locations corresponding to the type and field and their components will overlap. - Code which tries to interpret locations should probably be designed to ignore those that it doesn't understand, as more types of locations could be recorded in the future.repeated .google.protobuf.SourceCodeInfo.Location location = 1;
-
clearLocation
public DescriptorProtos.SourceCodeInfo.Builder clearLocation()
A Location identifies a piece of source code in a .proto file which corresponds to a particular definition. This information is intended to be useful to IDEs, code indexers, documentation generators, and similar tools. For example, say we have a file like: message Foo { optional string foo = 1; } Let's look at just the field definition: optional string foo = 1; ^ ^^ ^^ ^ ^^^ a bc de f ghi We have the following locations: span path represents [a,i) [ 4, 0, 2, 0 ] The whole field definition. [a,b) [ 4, 0, 2, 0, 4 ] The label (optional). [c,d) [ 4, 0, 2, 0, 5 ] The type (string). [e,f) [ 4, 0, 2, 0, 1 ] The name (foo). [g,h) [ 4, 0, 2, 0, 3 ] The number (1). Notes: - A location may refer to a repeated field itself (i.e. not to any particular index within it). This is used whenever a set of elements are logically enclosed in a single code segment. For example, an entire extend block (possibly containing multiple extension definitions) will have an outer location whose path refers to the "extensions" repeated field without an index. - Multiple locations may have the same path. This happens when a single logical declaration is spread out across multiple places. The most obvious example is the "extend" block again -- there may be multiple extend blocks in the same scope, each of which will have the same path. - A location's span is not always a subset of its parent's span. For example, the "extendee" of an extension declaration appears at the beginning of the "extend" block and is shared by all extensions within the block. - Just because a location's span is a subset of some other location's span does not mean that it is a descendant. For example, a "group" defines both a type and a field in a single declaration. Thus, the locations corresponding to the type and field and their components will overlap. - Code which tries to interpret locations should probably be designed to ignore those that it doesn't understand, as more types of locations could be recorded in the future.repeated .google.protobuf.SourceCodeInfo.Location location = 1;
-
removeLocation
public DescriptorProtos.SourceCodeInfo.Builder removeLocation(int index)
A Location identifies a piece of source code in a .proto file which corresponds to a particular definition. This information is intended to be useful to IDEs, code indexers, documentation generators, and similar tools. For example, say we have a file like: message Foo { optional string foo = 1; } Let's look at just the field definition: optional string foo = 1; ^ ^^ ^^ ^ ^^^ a bc de f ghi We have the following locations: span path represents [a,i) [ 4, 0, 2, 0 ] The whole field definition. [a,b) [ 4, 0, 2, 0, 4 ] The label (optional). [c,d) [ 4, 0, 2, 0, 5 ] The type (string). [e,f) [ 4, 0, 2, 0, 1 ] The name (foo). [g,h) [ 4, 0, 2, 0, 3 ] The number (1). Notes: - A location may refer to a repeated field itself (i.e. not to any particular index within it). This is used whenever a set of elements are logically enclosed in a single code segment. For example, an entire extend block (possibly containing multiple extension definitions) will have an outer location whose path refers to the "extensions" repeated field without an index. - Multiple locations may have the same path. This happens when a single logical declaration is spread out across multiple places. The most obvious example is the "extend" block again -- there may be multiple extend blocks in the same scope, each of which will have the same path. - A location's span is not always a subset of its parent's span. For example, the "extendee" of an extension declaration appears at the beginning of the "extend" block and is shared by all extensions within the block. - Just because a location's span is a subset of some other location's span does not mean that it is a descendant. For example, a "group" defines both a type and a field in a single declaration. Thus, the locations corresponding to the type and field and their components will overlap. - Code which tries to interpret locations should probably be designed to ignore those that it doesn't understand, as more types of locations could be recorded in the future.repeated .google.protobuf.SourceCodeInfo.Location location = 1;
-
getLocationBuilder
public DescriptorProtos.SourceCodeInfo.Location.Builder getLocationBuilder(int index)
A Location identifies a piece of source code in a .proto file which corresponds to a particular definition. This information is intended to be useful to IDEs, code indexers, documentation generators, and similar tools. For example, say we have a file like: message Foo { optional string foo = 1; } Let's look at just the field definition: optional string foo = 1; ^ ^^ ^^ ^ ^^^ a bc de f ghi We have the following locations: span path represents [a,i) [ 4, 0, 2, 0 ] The whole field definition. [a,b) [ 4, 0, 2, 0, 4 ] The label (optional). [c,d) [ 4, 0, 2, 0, 5 ] The type (string). [e,f) [ 4, 0, 2, 0, 1 ] The name (foo). [g,h) [ 4, 0, 2, 0, 3 ] The number (1). Notes: - A location may refer to a repeated field itself (i.e. not to any particular index within it). This is used whenever a set of elements are logically enclosed in a single code segment. For example, an entire extend block (possibly containing multiple extension definitions) will have an outer location whose path refers to the "extensions" repeated field without an index. - Multiple locations may have the same path. This happens when a single logical declaration is spread out across multiple places. The most obvious example is the "extend" block again -- there may be multiple extend blocks in the same scope, each of which will have the same path. - A location's span is not always a subset of its parent's span. For example, the "extendee" of an extension declaration appears at the beginning of the "extend" block and is shared by all extensions within the block. - Just because a location's span is a subset of some other location's span does not mean that it is a descendant. For example, a "group" defines both a type and a field in a single declaration. Thus, the locations corresponding to the type and field and their components will overlap. - Code which tries to interpret locations should probably be designed to ignore those that it doesn't understand, as more types of locations could be recorded in the future.repeated .google.protobuf.SourceCodeInfo.Location location = 1;
-
getLocationOrBuilder
public DescriptorProtos.SourceCodeInfo.LocationOrBuilder getLocationOrBuilder(int index)
A Location identifies a piece of source code in a .proto file which corresponds to a particular definition. This information is intended to be useful to IDEs, code indexers, documentation generators, and similar tools. For example, say we have a file like: message Foo { optional string foo = 1; } Let's look at just the field definition: optional string foo = 1; ^ ^^ ^^ ^ ^^^ a bc de f ghi We have the following locations: span path represents [a,i) [ 4, 0, 2, 0 ] The whole field definition. [a,b) [ 4, 0, 2, 0, 4 ] The label (optional). [c,d) [ 4, 0, 2, 0, 5 ] The type (string). [e,f) [ 4, 0, 2, 0, 1 ] The name (foo). [g,h) [ 4, 0, 2, 0, 3 ] The number (1). Notes: - A location may refer to a repeated field itself (i.e. not to any particular index within it). This is used whenever a set of elements are logically enclosed in a single code segment. For example, an entire extend block (possibly containing multiple extension definitions) will have an outer location whose path refers to the "extensions" repeated field without an index. - Multiple locations may have the same path. This happens when a single logical declaration is spread out across multiple places. The most obvious example is the "extend" block again -- there may be multiple extend blocks in the same scope, each of which will have the same path. - A location's span is not always a subset of its parent's span. For example, the "extendee" of an extension declaration appears at the beginning of the "extend" block and is shared by all extensions within the block. - Just because a location's span is a subset of some other location's span does not mean that it is a descendant. For example, a "group" defines both a type and a field in a single declaration. Thus, the locations corresponding to the type and field and their components will overlap. - Code which tries to interpret locations should probably be designed to ignore those that it doesn't understand, as more types of locations could be recorded in the future.repeated .google.protobuf.SourceCodeInfo.Location location = 1;- Specified by:
getLocationOrBuilderin interfaceDescriptorProtos.SourceCodeInfoOrBuilder
-
getLocationOrBuilderList
public java.util.List<? extends DescriptorProtos.SourceCodeInfo.LocationOrBuilder> getLocationOrBuilderList()
A Location identifies a piece of source code in a .proto file which corresponds to a particular definition. This information is intended to be useful to IDEs, code indexers, documentation generators, and similar tools. For example, say we have a file like: message Foo { optional string foo = 1; } Let's look at just the field definition: optional string foo = 1; ^ ^^ ^^ ^ ^^^ a bc de f ghi We have the following locations: span path represents [a,i) [ 4, 0, 2, 0 ] The whole field definition. [a,b) [ 4, 0, 2, 0, 4 ] The label (optional). [c,d) [ 4, 0, 2, 0, 5 ] The type (string). [e,f) [ 4, 0, 2, 0, 1 ] The name (foo). [g,h) [ 4, 0, 2, 0, 3 ] The number (1). Notes: - A location may refer to a repeated field itself (i.e. not to any particular index within it). This is used whenever a set of elements are logically enclosed in a single code segment. For example, an entire extend block (possibly containing multiple extension definitions) will have an outer location whose path refers to the "extensions" repeated field without an index. - Multiple locations may have the same path. This happens when a single logical declaration is spread out across multiple places. The most obvious example is the "extend" block again -- there may be multiple extend blocks in the same scope, each of which will have the same path. - A location's span is not always a subset of its parent's span. For example, the "extendee" of an extension declaration appears at the beginning of the "extend" block and is shared by all extensions within the block. - Just because a location's span is a subset of some other location's span does not mean that it is a descendant. For example, a "group" defines both a type and a field in a single declaration. Thus, the locations corresponding to the type and field and their components will overlap. - Code which tries to interpret locations should probably be designed to ignore those that it doesn't understand, as more types of locations could be recorded in the future.repeated .google.protobuf.SourceCodeInfo.Location location = 1;- Specified by:
getLocationOrBuilderListin interfaceDescriptorProtos.SourceCodeInfoOrBuilder
-
addLocationBuilder
public DescriptorProtos.SourceCodeInfo.Location.Builder addLocationBuilder()
A Location identifies a piece of source code in a .proto file which corresponds to a particular definition. This information is intended to be useful to IDEs, code indexers, documentation generators, and similar tools. For example, say we have a file like: message Foo { optional string foo = 1; } Let's look at just the field definition: optional string foo = 1; ^ ^^ ^^ ^ ^^^ a bc de f ghi We have the following locations: span path represents [a,i) [ 4, 0, 2, 0 ] The whole field definition. [a,b) [ 4, 0, 2, 0, 4 ] The label (optional). [c,d) [ 4, 0, 2, 0, 5 ] The type (string). [e,f) [ 4, 0, 2, 0, 1 ] The name (foo). [g,h) [ 4, 0, 2, 0, 3 ] The number (1). Notes: - A location may refer to a repeated field itself (i.e. not to any particular index within it). This is used whenever a set of elements are logically enclosed in a single code segment. For example, an entire extend block (possibly containing multiple extension definitions) will have an outer location whose path refers to the "extensions" repeated field without an index. - Multiple locations may have the same path. This happens when a single logical declaration is spread out across multiple places. The most obvious example is the "extend" block again -- there may be multiple extend blocks in the same scope, each of which will have the same path. - A location's span is not always a subset of its parent's span. For example, the "extendee" of an extension declaration appears at the beginning of the "extend" block and is shared by all extensions within the block. - Just because a location's span is a subset of some other location's span does not mean that it is a descendant. For example, a "group" defines both a type and a field in a single declaration. Thus, the locations corresponding to the type and field and their components will overlap. - Code which tries to interpret locations should probably be designed to ignore those that it doesn't understand, as more types of locations could be recorded in the future.repeated .google.protobuf.SourceCodeInfo.Location location = 1;
-
addLocationBuilder
public DescriptorProtos.SourceCodeInfo.Location.Builder addLocationBuilder(int index)
A Location identifies a piece of source code in a .proto file which corresponds to a particular definition. This information is intended to be useful to IDEs, code indexers, documentation generators, and similar tools. For example, say we have a file like: message Foo { optional string foo = 1; } Let's look at just the field definition: optional string foo = 1; ^ ^^ ^^ ^ ^^^ a bc de f ghi We have the following locations: span path represents [a,i) [ 4, 0, 2, 0 ] The whole field definition. [a,b) [ 4, 0, 2, 0, 4 ] The label (optional). [c,d) [ 4, 0, 2, 0, 5 ] The type (string). [e,f) [ 4, 0, 2, 0, 1 ] The name (foo). [g,h) [ 4, 0, 2, 0, 3 ] The number (1). Notes: - A location may refer to a repeated field itself (i.e. not to any particular index within it). This is used whenever a set of elements are logically enclosed in a single code segment. For example, an entire extend block (possibly containing multiple extension definitions) will have an outer location whose path refers to the "extensions" repeated field without an index. - Multiple locations may have the same path. This happens when a single logical declaration is spread out across multiple places. The most obvious example is the "extend" block again -- there may be multiple extend blocks in the same scope, each of which will have the same path. - A location's span is not always a subset of its parent's span. For example, the "extendee" of an extension declaration appears at the beginning of the "extend" block and is shared by all extensions within the block. - Just because a location's span is a subset of some other location's span does not mean that it is a descendant. For example, a "group" defines both a type and a field in a single declaration. Thus, the locations corresponding to the type and field and their components will overlap. - Code which tries to interpret locations should probably be designed to ignore those that it doesn't understand, as more types of locations could be recorded in the future.repeated .google.protobuf.SourceCodeInfo.Location location = 1;
-
getLocationBuilderList
public java.util.List<DescriptorProtos.SourceCodeInfo.Location.Builder> getLocationBuilderList()
A Location identifies a piece of source code in a .proto file which corresponds to a particular definition. This information is intended to be useful to IDEs, code indexers, documentation generators, and similar tools. For example, say we have a file like: message Foo { optional string foo = 1; } Let's look at just the field definition: optional string foo = 1; ^ ^^ ^^ ^ ^^^ a bc de f ghi We have the following locations: span path represents [a,i) [ 4, 0, 2, 0 ] The whole field definition. [a,b) [ 4, 0, 2, 0, 4 ] The label (optional). [c,d) [ 4, 0, 2, 0, 5 ] The type (string). [e,f) [ 4, 0, 2, 0, 1 ] The name (foo). [g,h) [ 4, 0, 2, 0, 3 ] The number (1). Notes: - A location may refer to a repeated field itself (i.e. not to any particular index within it). This is used whenever a set of elements are logically enclosed in a single code segment. For example, an entire extend block (possibly containing multiple extension definitions) will have an outer location whose path refers to the "extensions" repeated field without an index. - Multiple locations may have the same path. This happens when a single logical declaration is spread out across multiple places. The most obvious example is the "extend" block again -- there may be multiple extend blocks in the same scope, each of which will have the same path. - A location's span is not always a subset of its parent's span. For example, the "extendee" of an extension declaration appears at the beginning of the "extend" block and is shared by all extensions within the block. - Just because a location's span is a subset of some other location's span does not mean that it is a descendant. For example, a "group" defines both a type and a field in a single declaration. Thus, the locations corresponding to the type and field and their components will overlap. - Code which tries to interpret locations should probably be designed to ignore those that it doesn't understand, as more types of locations could be recorded in the future.repeated .google.protobuf.SourceCodeInfo.Location location = 1;
-
setUnknownFields
public final DescriptorProtos.SourceCodeInfo.Builder setUnknownFields(com.google.protobuf.UnknownFieldSet unknownFields)
- Specified by:
setUnknownFieldsin interfacecom.google.protobuf.Message.Builder- Overrides:
setUnknownFieldsin classcom.google.protobuf.GeneratedMessageV3.Builder<DescriptorProtos.SourceCodeInfo.Builder>
-
mergeUnknownFields
public final DescriptorProtos.SourceCodeInfo.Builder mergeUnknownFields(com.google.protobuf.UnknownFieldSet unknownFields)
- Specified by:
mergeUnknownFieldsin interfacecom.google.protobuf.Message.Builder- Overrides:
mergeUnknownFieldsin classcom.google.protobuf.GeneratedMessageV3.Builder<DescriptorProtos.SourceCodeInfo.Builder>
-
-