Uses of Interface
org.deeplearning4j.nn.api.Model
-
-
Uses of Model in org.deeplearning4j.earlystopping
Classes in org.deeplearning4j.earlystopping with type parameters of type Model Modifier and Type Class Description classEarlyStoppingConfiguration<T extends Model>static classEarlyStoppingConfiguration.Builder<T extends Model>interfaceEarlyStoppingModelSaver<T extends Model>classEarlyStoppingResult<T extends Model> -
Uses of Model in org.deeplearning4j.earlystopping.listener
Classes in org.deeplearning4j.earlystopping.listener with type parameters of type Model Modifier and Type Interface Description interfaceEarlyStoppingListener<T extends Model> -
Uses of Model in org.deeplearning4j.earlystopping.saver
Classes in org.deeplearning4j.earlystopping.saver with type parameters of type Model Modifier and Type Class Description classInMemoryModelSaver<T extends Model> -
Uses of Model in org.deeplearning4j.earlystopping.scorecalc
Classes in org.deeplearning4j.earlystopping.scorecalc with type parameters of type Model Modifier and Type Interface Description interfaceScoreCalculator<T extends Model>Methods in org.deeplearning4j.earlystopping.scorecalc with parameters of type Model Modifier and Type Method Description protected INDArray[]AutoencoderScoreCalculator. output(Model network, INDArray[] input, INDArray[] fMask, INDArray[] lMask)protected INDArrayAutoencoderScoreCalculator. output(Model net, INDArray input, INDArray fMask, INDArray lMask)protected INDArray[]DataSetLossCalculator. output(Model network, INDArray[] input, INDArray[] fMask, INDArray[] lMask)protected INDArrayDataSetLossCalculator. output(Model network, INDArray input, INDArray fMask, INDArray lMask)protected INDArray[]VAEReconErrorScoreCalculator. output(Model network, INDArray[] input, INDArray[] fMask, INDArray[] lMask)protected INDArrayVAEReconErrorScoreCalculator. output(Model net, INDArray input, INDArray fMask, INDArray lMask)protected INDArray[]VAEReconProbScoreCalculator. output(Model network, INDArray[] input, INDArray[] fMask, INDArray[] lMask)protected INDArrayVAEReconProbScoreCalculator. output(Model network, INDArray input, INDArray fMask, INDArray lMask)protected doubleAutoencoderScoreCalculator. scoreMinibatch(Model network, INDArray[] features, INDArray[] labels, INDArray[] fMask, INDArray[] lMask, INDArray[] output)protected doubleAutoencoderScoreCalculator. scoreMinibatch(Model network, INDArray features, INDArray labels, INDArray fMask, INDArray lMask, INDArray output)protected doubleDataSetLossCalculator. scoreMinibatch(Model network, INDArray[] features, INDArray[] labels, INDArray[] fMask, INDArray[] lMask, INDArray[] output)protected doubleVAEReconErrorScoreCalculator. scoreMinibatch(Model network, INDArray[] features, INDArray[] labels, INDArray[] fMask, INDArray[] lMask, INDArray[] output)protected doubleVAEReconErrorScoreCalculator. scoreMinibatch(Model network, INDArray features, INDArray labels, INDArray fMask, INDArray lMask, INDArray output)protected doubleVAEReconProbScoreCalculator. scoreMinibatch(Model network, INDArray[] features, INDArray[] labels, INDArray[] fMask, INDArray[] lMask, INDArray[] output)protected doubleVAEReconProbScoreCalculator. scoreMinibatch(Model net, INDArray features, INDArray labels, INDArray fMask, INDArray lMask, INDArray output) -
Uses of Model in org.deeplearning4j.earlystopping.scorecalc.base
Classes in org.deeplearning4j.earlystopping.scorecalc.base with type parameters of type Model Modifier and Type Class Description classBaseIEvaluationScoreCalculator<T extends Model,U extends IEvaluation>classBaseScoreCalculator<T extends Model> -
Uses of Model in org.deeplearning4j.earlystopping.trainer
Classes in org.deeplearning4j.earlystopping.trainer with type parameters of type Model Modifier and Type Class Description classBaseEarlyStoppingTrainer<T extends Model>interfaceIEarlyStoppingTrainer<T extends Model>Fields in org.deeplearning4j.earlystopping.trainer declared as Model Modifier and Type Field Description protected TBaseEarlyStoppingTrainer. modelMethods in org.deeplearning4j.earlystopping.trainer with parameters of type Model Modifier and Type Method Description protected voidBaseEarlyStoppingTrainer. triggerEpochListeners(boolean epochStart, Model model, int epochNum) -
Uses of Model in org.deeplearning4j.nn.adapters
Methods in org.deeplearning4j.nn.adapters with parameters of type Model Modifier and Type Method Description List<DetectedObject>YoloModelAdapter. apply(Model model, INDArray[] inputs, INDArray[] masks, INDArray[] labelsMasks) -
Uses of Model in org.deeplearning4j.nn.api
Subinterfaces of Model in org.deeplearning4j.nn.api Modifier and Type Interface Description interfaceClassifierinterfaceLayerMethods in org.deeplearning4j.nn.api with parameters of type Model Modifier and Type Method Description TModelAdapter. apply(Model model, INDArray[] inputs, INDArray[] inputMasks, INDArray[] labelsMasks)This method invokes model internally, and does convertion to T -
Uses of Model in org.deeplearning4j.nn.api.layers
Subinterfaces of Model in org.deeplearning4j.nn.api.layers Modifier and Type Interface Description interfaceIOutputLayerinterfaceRecurrentLayer -
Uses of Model in org.deeplearning4j.nn.graph
Classes in org.deeplearning4j.nn.graph that implement Model Modifier and Type Class Description classComputationGraph -
Uses of Model in org.deeplearning4j.nn.layers
Classes in org.deeplearning4j.nn.layers that implement Model Modifier and Type Class Description classAbstractLayer<LayerConfT extends Layer>A layer with input and output, no parameters or gradientsclassActivationLayerclassBaseLayer<LayerConfT extends BaseLayer>A layer with parametersclassBaseOutputLayer<LayerConfT extends BaseOutputLayer>classBasePretrainNetwork<LayerConfT extends BasePretrainNetwork>classDropoutLayerclassFrozenLayerclassFrozenLayerWithBackpropFrozen layer freezes parameters of the layer it wraps, but allows the backpropagation to continue.classLossLayerclassOutputLayerclassRepeatVector -
Uses of Model in org.deeplearning4j.nn.layers.convolution
Classes in org.deeplearning4j.nn.layers.convolution that implement Model Modifier and Type Class Description classCnn3DLossLayerclassCnnLossLayerclassConvolution1DLayerclassConvolution3DLayerclassConvolutionLayerclassCropping1DLayerclassCropping2DLayerclassCropping3DLayerclassDeconvolution2DLayerclassDeconvolution3DLayerclassDepthwiseConvolution2DLayerclassSeparableConvolution2DLayerclassSpaceToBatchclassSpaceToDepthclassZeroPadding1DLayerclassZeroPadding3DLayerclassZeroPaddingLayer -
Uses of Model in org.deeplearning4j.nn.layers.convolution.subsampling
Classes in org.deeplearning4j.nn.layers.convolution.subsampling that implement Model Modifier and Type Class Description classSubsampling1DLayerclassSubsampling3DLayerclassSubsamplingLayer -
Uses of Model in org.deeplearning4j.nn.layers.convolution.upsampling
Classes in org.deeplearning4j.nn.layers.convolution.upsampling that implement Model Modifier and Type Class Description classUpsampling1DclassUpsampling2DclassUpsampling3D -
Uses of Model in org.deeplearning4j.nn.layers.feedforward
Classes in org.deeplearning4j.nn.layers.feedforward that implement Model Modifier and Type Class Description classPReLU -
Uses of Model in org.deeplearning4j.nn.layers.feedforward.autoencoder
Classes in org.deeplearning4j.nn.layers.feedforward.autoencoder that implement Model Modifier and Type Class Description classAutoEncoder -
Uses of Model in org.deeplearning4j.nn.layers.feedforward.dense
Classes in org.deeplearning4j.nn.layers.feedforward.dense that implement Model Modifier and Type Class Description classDenseLayer -
Uses of Model in org.deeplearning4j.nn.layers.feedforward.elementwise
Classes in org.deeplearning4j.nn.layers.feedforward.elementwise that implement Model Modifier and Type Class Description classElementWiseMultiplicationLayer -
Uses of Model in org.deeplearning4j.nn.layers.feedforward.embedding
Classes in org.deeplearning4j.nn.layers.feedforward.embedding that implement Model Modifier and Type Class Description classEmbeddingLayerclassEmbeddingSequenceLayer -
Uses of Model in org.deeplearning4j.nn.layers.normalization
Classes in org.deeplearning4j.nn.layers.normalization that implement Model Modifier and Type Class Description classBatchNormalizationclassLocalResponseNormalization -
Uses of Model in org.deeplearning4j.nn.layers.objdetect
Classes in org.deeplearning4j.nn.layers.objdetect that implement Model Modifier and Type Class Description classYolo2OutputLayer -
Uses of Model in org.deeplearning4j.nn.layers.ocnn
Classes in org.deeplearning4j.nn.layers.ocnn that implement Model Modifier and Type Class Description classOCNNOutputLayer -
Uses of Model in org.deeplearning4j.nn.layers.pooling
Classes in org.deeplearning4j.nn.layers.pooling that implement Model Modifier and Type Class Description classGlobalPoolingLayer -
Uses of Model in org.deeplearning4j.nn.layers.recurrent
Classes in org.deeplearning4j.nn.layers.recurrent that implement Model Modifier and Type Class Description classBaseRecurrentLayer<LayerConfT extends BaseRecurrentLayer>classBidirectionalLayerclassGravesBidirectionalLSTMclassGravesLSTMDeprecated.classLastTimeStepLayerclassLSTMclassMaskZeroLayerclassRnnLossLayerclassRnnOutputLayerclassSimpleRnnclassTimeDistributedLayer -
Uses of Model in org.deeplearning4j.nn.layers.samediff
Classes in org.deeplearning4j.nn.layers.samediff that implement Model Modifier and Type Class Description classSameDiffLayerclassSameDiffOutputLayer -
Uses of Model in org.deeplearning4j.nn.layers.training
Classes in org.deeplearning4j.nn.layers.training that implement Model Modifier and Type Class Description classCenterLossOutputLayer -
Uses of Model in org.deeplearning4j.nn.layers.util
Classes in org.deeplearning4j.nn.layers.util that implement Model Modifier and Type Class Description classMaskLayer -
Uses of Model in org.deeplearning4j.nn.layers.variational
Classes in org.deeplearning4j.nn.layers.variational that implement Model Modifier and Type Class Description classVariationalAutoencoder -
Uses of Model in org.deeplearning4j.nn.layers.wrapper
Classes in org.deeplearning4j.nn.layers.wrapper that implement Model Modifier and Type Class Description classBaseWrapperLayer -
Uses of Model in org.deeplearning4j.nn.multilayer
Classes in org.deeplearning4j.nn.multilayer that implement Model Modifier and Type Class Description classMultiLayerNetwork -
Uses of Model in org.deeplearning4j.nn.updater
Classes in org.deeplearning4j.nn.updater with type parameters of type Model Modifier and Type Class Description classBaseMultiLayerUpdater<T extends Model>Fields in org.deeplearning4j.nn.updater declared as Model Modifier and Type Field Description protected TBaseMultiLayerUpdater. networkMethods in org.deeplearning4j.nn.updater with parameters of type Model Modifier and Type Method Description static UpdaterUpdaterCreator. getUpdater(Model layer) -
Uses of Model in org.deeplearning4j.optimize
Methods in org.deeplearning4j.optimize with parameters of type Model Modifier and Type Method Description Solver.BuilderSolver.Builder. model(Model model) -
Uses of Model in org.deeplearning4j.optimize.api
Methods in org.deeplearning4j.optimize.api with parameters of type Model Modifier and Type Method Description voidBaseTrainingListener. iterationDone(Model model, int iteration, int epoch)abstract voidIterationListener. iterationDone(Model model, int iteration, int epoch)Deprecated.Event listener for each iterationvoidTrainingListener. iterationDone(Model model, int iteration, int epoch)Event listener for each iteration.voidBaseTrainingListener. onBackwardPass(Model model)voidTrainingListener. onBackwardPass(Model model)Called once per iteration (backward pass) after gradients have been calculated, and updated Gradients are available viagradient().voidBaseTrainingListener. onEpochEnd(Model model)voidTrainingListener. onEpochEnd(Model model)Called once at the end of each epoch, when using methods such asMultiLayerNetwork.fit(DataSetIterator),ComputationGraph.fit(DataSetIterator)orComputationGraph.fit(MultiDataSetIterator)voidBaseTrainingListener. onEpochStart(Model model)voidTrainingListener. onEpochStart(Model model)Called once at the start of each epoch, when using methods such asMultiLayerNetwork.fit(DataSetIterator),ComputationGraph.fit(DataSetIterator)orComputationGraph.fit(MultiDataSetIterator)voidBaseTrainingListener. onForwardPass(Model model, List<INDArray> activations)voidBaseTrainingListener. onForwardPass(Model model, Map<String,INDArray> activations)voidTrainingListener. onForwardPass(Model model, List<INDArray> activations)Called once per iteration (forward pass) for activations (usually for aMultiLayerNetwork), only at training timevoidTrainingListener. onForwardPass(Model model, Map<String,INDArray> activations)Called once per iteration (forward pass) for activations (usually for aComputationGraph), only at training timevoidBaseTrainingListener. onGradientCalculation(Model model)voidTrainingListener. onGradientCalculation(Model model)Called once per iteration (backward pass) before the gradients are updated Gradients are available viagradient().voidConvexOptimizer. updateGradientAccordingToParams(Gradient gradient, Model model, int batchSize, LayerWorkspaceMgr workspaceMgr)Update the gradient according to the configuration such as adagrad, momentum, and sparsity -
Uses of Model in org.deeplearning4j.optimize.listeners
Methods in org.deeplearning4j.optimize.listeners with parameters of type Model Modifier and Type Method Description protected voidFailureTestingListener. call(FailureTestingListener.CallType callType, Model model)protected static intCheckpointListener. getEpoch(Model model)protected static intCheckpointListener. getIter(Model model)protected static StringCheckpointListener. getModelType(Model model)protected voidEvaluativeListener. invokeListener(Model model)voidCheckpointListener. iterationDone(Model model, int iteration, int epoch)voidCollectScoresIterationListener. iterationDone(Model model, int iteration, int epoch)voidCollectScoresListener. iterationDone(Model model, int iteration, int epoch)voidComposableIterationListener. iterationDone(Model model, int iteration, int epoch)Deprecated.voidEvaluativeListener. iterationDone(Model model, int iteration, int epoch)Event listener for each iterationvoidFailureTestingListener. iterationDone(Model model, int iteration, int epoch)voidPerformanceListener. iterationDone(Model model, int iteration, int epoch)voidScoreIterationListener. iterationDone(Model model, int iteration, int epoch)voidSleepyTrainingListener. iterationDone(Model model, int iteration, int epoch)voidTimeIterationListener. iterationDone(Model model, int iteration, int epoch)voidFailureTestingListener. onBackwardPass(Model model)voidSleepyTrainingListener. onBackwardPass(Model model)voidCheckpointListener. onEpochEnd(Model model)voidEvaluativeListener. onEpochEnd(Model model)voidFailureTestingListener. onEpochEnd(Model model)voidSleepyTrainingListener. onEpochEnd(Model model)voidEvaluativeListener. onEpochStart(Model model)voidFailureTestingListener. onEpochStart(Model model)voidSleepyTrainingListener. onEpochStart(Model model)voidFailureTestingListener. onForwardPass(Model model, List<INDArray> activations)voidFailureTestingListener. onForwardPass(Model model, Map<String,INDArray> activations)voidSleepyTrainingListener. onForwardPass(Model model, List<INDArray> activations)voidSleepyTrainingListener. onForwardPass(Model model, Map<String,INDArray> activations)voidFailureTestingListener. onGradientCalculation(Model model)voidSleepyTrainingListener. onGradientCalculation(Model model)booleanFailureTestingListener.And. triggerFailure(FailureTestingListener.CallType callType, int iteration, int epoch, Model model)abstract booleanFailureTestingListener.FailureTrigger. triggerFailure(FailureTestingListener.CallType callType, int iteration, int epoch, Model model)If true: trigger the failure.booleanFailureTestingListener.HostNameTrigger. triggerFailure(FailureTestingListener.CallType callType, int iteration, int epoch, Model model)booleanFailureTestingListener.IterationEpochTrigger. triggerFailure(FailureTestingListener.CallType callType, int iteration, int epoch, Model model)booleanFailureTestingListener.Or. triggerFailure(FailureTestingListener.CallType callType, int iteration, int epoch, Model model)booleanFailureTestingListener.RandomProb. triggerFailure(FailureTestingListener.CallType callType, int iteration, int epoch, Model model)booleanFailureTestingListener.TimeSinceInitializedTrigger. triggerFailure(FailureTestingListener.CallType callType, int iteration, int epoch, Model model)booleanFailureTestingListener.UserNameTrigger. triggerFailure(FailureTestingListener.CallType callType, int iteration, int epoch, Model model) -
Uses of Model in org.deeplearning4j.optimize.listeners.callbacks
Methods in org.deeplearning4j.optimize.listeners.callbacks with parameters of type Model Modifier and Type Method Description voidEvaluationCallback. call(EvaluativeListener listener, Model model, long invocationsCount, IEvaluation[] evaluations)voidModelSavingCallback. call(EvaluativeListener listener, Model model, long invocationsCount, IEvaluation[] evaluations)protected voidModelSavingCallback. save(Model model, String filename)This method saves model -
Uses of Model in org.deeplearning4j.optimize.solvers
Fields in org.deeplearning4j.optimize.solvers declared as Model Modifier and Type Field Description protected ModelBaseOptimizer. modelMethods in org.deeplearning4j.optimize.solvers with parameters of type Model Modifier and Type Method Description static voidBaseOptimizer. applyConstraints(Model model)static intBaseOptimizer. getEpochCount(Model model)static intBaseOptimizer. getIterationCount(Model model)static voidBaseOptimizer. incrementIterationCount(Model model, int incrementBy)voidBaseOptimizer. updateGradientAccordingToParams(Gradient gradient, Model model, int batchSize, LayerWorkspaceMgr workspaceMgr)Constructors in org.deeplearning4j.optimize.solvers with parameters of type Model Constructor Description BackTrackLineSearch(Model optimizable, ConvexOptimizer optimizer)BackTrackLineSearch(Model layer, StepFunction stepFunction, ConvexOptimizer optimizer)BaseOptimizer(NeuralNetConfiguration conf, StepFunction stepFunction, Collection<TrainingListener> trainingListeners, Model model)ConjugateGradient(NeuralNetConfiguration conf, StepFunction stepFunction, Collection<TrainingListener> trainingListeners, Model model)LBFGS(NeuralNetConfiguration conf, StepFunction stepFunction, Collection<TrainingListener> trainingListeners, Model model)LineGradientDescent(NeuralNetConfiguration conf, StepFunction stepFunction, Collection<TrainingListener> trainingListeners, Model model)StochasticGradientDescent(NeuralNetConfiguration conf, StepFunction stepFunction, Collection<TrainingListener> trainingListeners, Model model) -
Uses of Model in org.deeplearning4j.optimize.solvers.accumulation
Methods in org.deeplearning4j.optimize.solvers.accumulation with parameters of type Model Modifier and Type Method Description static longEncodedGradientsAccumulator. getOptimalBufferSize(Model model, int numWorkers, int queueSize) -
Uses of Model in org.deeplearning4j.util
Methods in org.deeplearning4j.util with parameters of type Model Modifier and Type Method Description static StringCrashReportingUtil. generateMemoryStatus(Model net, int minibatch, InputType... inputTypes)Generate memory/system report as a String, for the specified network.static INDArrayNetworkUtils. output(Model model, INDArray input)Currently supportsMultiLayerNetworkandComputationGraphmodels.static TaskModelSerializer. taskByModel(Model model)static voidCrashReportingUtil. writeMemoryCrashDump(@NonNull Model net, @NonNull Throwable e)Generate and write the crash dump to the crash dump root directory (by default, the working directory).static voidModelSerializer. writeModel(@NonNull Model model, @NonNull File file, boolean saveUpdater)Write a model to a filestatic voidModelSerializer. writeModel(@NonNull Model model, @NonNull File file, boolean saveUpdater, DataNormalization dataNormalization)Write a model to a filestatic voidModelSerializer. writeModel(@NonNull Model model, @NonNull OutputStream stream, boolean saveUpdater)Write a model to an output streamstatic voidModelSerializer. writeModel(@NonNull Model model, @NonNull OutputStream stream, boolean saveUpdater, DataNormalization dataNormalization)Write a model to an output streamstatic voidModelSerializer. writeModel(@NonNull Model model, @NonNull String path, boolean saveUpdater)Write a model to a file path
-