Class BaseUpsamplingLayer
- java.lang.Object
-
- org.deeplearning4j.nn.conf.layers.Layer
-
- org.deeplearning4j.nn.conf.layers.NoParamLayer
-
- org.deeplearning4j.nn.conf.layers.BaseUpsamplingLayer
-
- All Implemented Interfaces:
Serializable,Cloneable,TrainingConfig
- Direct Known Subclasses:
Upsampling1D,Upsampling2D,Upsampling3D
public abstract class BaseUpsamplingLayer extends NoParamLayer
Upsampling base layer- Author:
- Max Pumperla
- See Also:
- Serialized Form
-
-
Nested Class Summary
Nested Classes Modifier and Type Class Description protected static classBaseUpsamplingLayer.UpsamplingBuilder<T extends BaseUpsamplingLayer.UpsamplingBuilder<T>>-
Nested classes/interfaces inherited from class org.deeplearning4j.nn.conf.layers.Layer
Layer.Builder<T extends Layer.Builder<T>>
-
-
Field Summary
Fields Modifier and Type Field Description protected int[]size-
Fields inherited from class org.deeplearning4j.nn.conf.layers.Layer
constraints, iDropout, layerName
-
-
Constructor Summary
Constructors Modifier Constructor Description protectedBaseUpsamplingLayer(BaseUpsamplingLayer.UpsamplingBuilder builder)
-
Method Summary
All Methods Instance Methods Concrete Methods Modifier and Type Method Description BaseUpsamplingLayerclone()InputPreProcessorgetPreProcessorForInputType(InputType inputType)For the given type of input to this layer, what preprocessor (if any) is required?
Returns null if no preprocessor is required, otherwise returns an appropriateInputPreProcessorfor this layer, such as aCnnToFeedForwardPreProcessor-
Methods inherited from class org.deeplearning4j.nn.conf.layers.NoParamLayer
getGradientNormalization, getGradientNormalizationThreshold, getRegularizationByParam, initializer, isPretrainParam, setNIn
-
Methods inherited from class org.deeplearning4j.nn.conf.layers.Layer
getMemoryReport, getOutputType, getUpdaterByParam, initializeConstraints, instantiate, resetLayerDefaultConfig, setDataType
-
Methods inherited from class java.lang.Object
equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
-
Methods inherited from interface org.deeplearning4j.nn.api.TrainingConfig
getLayerName
-
-
-
-
Constructor Detail
-
BaseUpsamplingLayer
protected BaseUpsamplingLayer(BaseUpsamplingLayer.UpsamplingBuilder builder)
-
-
Method Detail
-
clone
public BaseUpsamplingLayer clone()
-
getPreProcessorForInputType
public InputPreProcessor getPreProcessorForInputType(InputType inputType)
Description copied from class:LayerFor the given type of input to this layer, what preprocessor (if any) is required?
Returns null if no preprocessor is required, otherwise returns an appropriateInputPreProcessorfor this layer, such as aCnnToFeedForwardPreProcessor- Specified by:
getPreProcessorForInputTypein classLayer- Parameters:
inputType- InputType to this layer- Returns:
- Null if no preprocessor is required, otherwise the type of preprocessor necessary for this layer/input combination
-
-