Class Deconvolution3D
- java.lang.Object
-
- org.deeplearning4j.nn.conf.layers.Layer
-
- org.deeplearning4j.nn.conf.layers.BaseLayer
-
- org.deeplearning4j.nn.conf.layers.FeedForwardLayer
-
- org.deeplearning4j.nn.conf.layers.ConvolutionLayer
-
- org.deeplearning4j.nn.conf.layers.Deconvolution3D
-
- All Implemented Interfaces:
Serializable,Cloneable,TrainingConfig
public class Deconvolution3D extends ConvolutionLayer
- See Also:
- Serialized Form
-
-
Nested Class Summary
Nested Classes Modifier and Type Class Description static classDeconvolution3D.Builder-
Nested classes/interfaces inherited from class org.deeplearning4j.nn.conf.layers.ConvolutionLayer
ConvolutionLayer.AlgoMode, ConvolutionLayer.BaseConvBuilder<T extends ConvolutionLayer.BaseConvBuilder<T>>, ConvolutionLayer.BwdDataAlgo, ConvolutionLayer.BwdFilterAlgo, ConvolutionLayer.FwdAlgo
-
-
Field Summary
-
Fields inherited from class org.deeplearning4j.nn.conf.layers.ConvolutionLayer
cnn2dDataFormat, convolutionMode, cudnnAlgoMode, cudnnAllowFallback, cudnnBwdDataAlgo, cudnnBwdFilterAlgo, cudnnFwdAlgo, dilation, hasBias, kernelSize, padding, stride
-
Fields inherited from class org.deeplearning4j.nn.conf.layers.FeedForwardLayer
nIn, nOut, timeDistributedFormat
-
Fields inherited from class org.deeplearning4j.nn.conf.layers.BaseLayer
activationFn, biasInit, biasUpdater, gainInit, gradientNormalization, gradientNormalizationThreshold, iUpdater, regularization, regularizationBias, weightInitFn, weightNoise
-
Fields inherited from class org.deeplearning4j.nn.conf.layers.Layer
constraints, iDropout, layerName
-
-
Constructor Summary
Constructors Modifier Constructor Description protectedDeconvolution3D(Deconvolution3D.Builder builder)Deconvolution3D layer nIn in the input layer is the number of channels nOut is the number of filters to be used in the net or in other words the channels The builder specifies the filter/kernel size, the stride and padding The pooling layer takes the kernel size
-
Method Summary
All Methods Instance Methods Concrete Methods Modifier and Type Method Description Deconvolution3Dclone()InputTypegetOutputType(int layerIndex, InputType inputType)For a given type of input to this layer, what is the type of the output?InputPreProcessorgetPreProcessorForInputType(InputType inputType)For the given type of input to this layer, what preprocessor (if any) is required?
Returns null if no preprocessor is required, otherwise returns an appropriateInputPreProcessorfor this layer, such as aCnnToFeedForwardPreProcessorbooleanhasBias()ParamInitializerinitializer()Layerinstantiate(NeuralNetConfiguration conf, Collection<TrainingListener> trainingListeners, int layerIndex, INDArray layerParamsView, boolean initializeParams, DataType networkDataType)voidsetNIn(InputType inputType, boolean override)Set the nIn value (number of inputs, or input channels for CNNs) based on the given input type-
Methods inherited from class org.deeplearning4j.nn.conf.layers.ConvolutionLayer
getMemoryReport
-
Methods inherited from class org.deeplearning4j.nn.conf.layers.FeedForwardLayer
isPretrainParam
-
Methods inherited from class org.deeplearning4j.nn.conf.layers.BaseLayer
getGradientNormalization, getRegularizationByParam, getUpdaterByParam, resetLayerDefaultConfig
-
Methods inherited from class org.deeplearning4j.nn.conf.layers.Layer
initializeConstraints, setDataType
-
Methods inherited from class java.lang.Object
equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
-
Methods inherited from interface org.deeplearning4j.nn.api.TrainingConfig
getGradientNormalizationThreshold, getLayerName
-
-
-
-
Constructor Detail
-
Deconvolution3D
protected Deconvolution3D(Deconvolution3D.Builder builder)
Deconvolution3D layer nIn in the input layer is the number of channels nOut is the number of filters to be used in the net or in other words the channels The builder specifies the filter/kernel size, the stride and padding The pooling layer takes the kernel size
-
-
Method Detail
-
hasBias
public boolean hasBias()
- Overrides:
hasBiasin classConvolutionLayer
-
clone
public Deconvolution3D clone()
- Overrides:
clonein classConvolutionLayer
-
instantiate
public Layer instantiate(NeuralNetConfiguration conf, Collection<TrainingListener> trainingListeners, int layerIndex, INDArray layerParamsView, boolean initializeParams, DataType networkDataType)
- Overrides:
instantiatein classConvolutionLayer
-
initializer
public ParamInitializer initializer()
- Overrides:
initializerin classConvolutionLayer- Returns:
- The parameter initializer for this model
-
getPreProcessorForInputType
public InputPreProcessor getPreProcessorForInputType(InputType inputType)
Description copied from class:LayerFor the given type of input to this layer, what preprocessor (if any) is required?
Returns null if no preprocessor is required, otherwise returns an appropriateInputPreProcessorfor this layer, such as aCnnToFeedForwardPreProcessor- Overrides:
getPreProcessorForInputTypein classConvolutionLayer- Parameters:
inputType- InputType to this layer- Returns:
- Null if no preprocessor is required, otherwise the type of preprocessor necessary for this layer/input combination
-
setNIn
public void setNIn(InputType inputType, boolean override)
Description copied from class:LayerSet the nIn value (number of inputs, or input channels for CNNs) based on the given input type- Overrides:
setNInin classConvolutionLayer- Parameters:
inputType- Input type for this layeroverride- If false: only set the nIn value if it's not already set. If true: set it regardless of whether it's already set or not.
-
getOutputType
public InputType getOutputType(int layerIndex, InputType inputType)
Description copied from class:LayerFor a given type of input to this layer, what is the type of the output?- Overrides:
getOutputTypein classConvolutionLayer- Parameters:
layerIndex- Index of the layerinputType- Type of input for the layer- Returns:
- Type of output from the layer
-
-