public class BatchNormalization extends FeedForwardLayer
| Modifier and Type | Class and Description |
|---|---|
static class |
BatchNormalization.Builder |
| Modifier and Type | Field and Description |
|---|---|
protected double |
beta |
protected CNN2DFormat |
cnn2DFormat |
protected boolean |
cudnnAllowFallback |
protected double |
decay |
protected double |
eps |
protected double |
gamma |
protected boolean |
isMinibatch |
protected boolean |
lockGammaBeta |
protected boolean |
useLogStd |
nIn, nOut, timeDistributedFormatactivationFn, biasInit, biasUpdater, gainInit, gradientNormalization, gradientNormalizationThreshold, iUpdater, regularization, regularizationBias, weightInitFn, weightNoiseconstraints, iDropout, layerName| Constructor and Description |
|---|
BatchNormalization() |
| Modifier and Type | Method and Description |
|---|---|
BatchNormalization |
clone() |
LayerMemoryReport |
getMemoryReport(InputType inputType)
This is a report of the estimated memory consumption for the given layer
|
InputType |
getOutputType(int layerIndex,
InputType inputType)
For a given type of input to this layer, what is the type of the output?
|
InputPreProcessor |
getPreProcessorForInputType(InputType inputType)
For the given type of input to this layer, what preprocessor (if any) is required?
Returns null if no preprocessor is required, otherwise returns an appropriate InputPreProcessor for this layer, such as a CnnToFeedForwardPreProcessor |
List<Regularization> |
getRegularizationByParam(String paramName)
Get the regularization types (l1/l2/weight decay) for the given parameter.
|
IUpdater |
getUpdaterByParam(String paramName)
Get the updater for the given parameter.
|
ParamInitializer |
initializer() |
Layer |
instantiate(NeuralNetConfiguration conf,
Collection<TrainingListener> trainingListeners,
int layerIndex,
INDArray layerParamsView,
boolean initializeParams,
DataType networkDataType) |
boolean |
isPretrainParam(String paramName)
Is the specified parameter a layerwise pretraining only parameter?
For example, visible bias params in an autoencoder (or, decoder params in a variational autoencoder) aren't used during supervised backprop. Layers (like DenseLayer, etc) with no pretrainable parameters will return false for all (valid) inputs. |
void |
setNIn(InputType inputType,
boolean override)
Set the nIn value (number of inputs, or input channels for CNNs) based on the given input
type
|
getGradientNormalization, resetLayerDefaultConfiginitializeConstraints, setDataTypeequals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitgetGradientNormalizationThreshold, getLayerNameprotected double decay
protected double eps
protected boolean isMinibatch
protected double gamma
protected double beta
protected boolean lockGammaBeta
protected boolean cudnnAllowFallback
protected boolean useLogStd
protected CNN2DFormat cnn2DFormat
public BatchNormalization clone()
public Layer instantiate(NeuralNetConfiguration conf, Collection<TrainingListener> trainingListeners, int layerIndex, INDArray layerParamsView, boolean initializeParams, DataType networkDataType)
instantiate in class Layerpublic ParamInitializer initializer()
initializer in class Layerpublic InputType getOutputType(int layerIndex, InputType inputType)
LayergetOutputType in class FeedForwardLayerlayerIndex - Index of the layerinputType - Type of input for the layerpublic void setNIn(InputType inputType, boolean override)
LayersetNIn in class FeedForwardLayerinputType - Input type for this layeroverride - If false: only set the nIn value if it's not already set. If true: set it
regardless of whether it's already set or not.public InputPreProcessor getPreProcessorForInputType(InputType inputType)
LayerInputPreProcessor for this layer, such as a CnnToFeedForwardPreProcessorgetPreProcessorForInputType in class FeedForwardLayerinputType - InputType to this layerpublic List<Regularization> getRegularizationByParam(String paramName)
LayergetRegularizationByParam in interface TrainingConfiggetRegularizationByParam in class BaseLayerparamName - Parameter name ("W", "b" etc)public IUpdater getUpdaterByParam(String paramName)
BaseLayergetUpdaterByParam in interface TrainingConfiggetUpdaterByParam in class BaseLayerparamName - Parameter namepublic LayerMemoryReport getMemoryReport(InputType inputType)
LayergetMemoryReport in class LayerinputType - Input type to the layer. Memory consumption is often a function of the input
typepublic boolean isPretrainParam(String paramName)
LayerisPretrainParam in interface TrainingConfigisPretrainParam in class FeedForwardLayerparamName - Parameter name/keyCopyright © 2020. All rights reserved.