EarlyStoppingModelSaver<T extends Model> modelSaver
List<E> epochTerminationConditions
List<E> iterationTerminationConditions
boolean saveLastModel
int evaluateEveryNEpochs
ScoreCalculator<T extends Model> scoreCalculator
Supplier<T> scoreCalculatorSupplier
RegressionEvaluation.Metric metric
RegressionEvaluation evaluation
Evaluation.Metric metric
boolean average
DataSetIterator dataSetIterator
MultiDataSetIterator multiDataSetIterator
boolean average
RegressionEvaluation.Metric metric
ROCScoreCalculator.ROCType type
ROCScoreCalculator.Metric metric
RegressionEvaluation.Metric metric
RegressionEvaluation evaluation
int reconstructionProbNumSamples
boolean logProb
boolean average
MultiDataSetIterator iterator
DataSetIterator iter
MultiDataSetIterator mdsIterator
DataSetIterator iterator
double scoreSum
int minibatchCount
int exampleCount
double bestExpectedScore
int maxEpochs
double maxScore
long maxTimeAmount
TimeUnit maxTimeUnit
long initializationTime
long endTime
int maxEpochsWithNoImprovement
int bestEpoch
double bestScore
double minImprovement
int outputLayerIndex
int outputIndex
double detectionThreshold
Map<K,V> vertices
Map<K,V> vertexInputs
WorkspaceMode trainingWorkspaceMode
WorkspaceMode inferenceWorkspaceMode
CacheMode cacheMode
DataType dataType
boolean validateOutputLayerConfig
List<E> networkInputs
List<E> networkOutputs
BackpropType backpropType
int tbpttFwdLength
int tbpttBackLength
NeuralNetConfiguration defaultConfiguration
int iterationCount
int epochCount
int[] topologicalOrder
List<E> topologicalOrderStr
List<E> confs
Map<K,V> inputPreProcessors
BackpropType backpropType
int tbpttFwdLength
int tbpttBackLength
boolean validateOutputLayerConfig
WorkspaceMode trainingWorkspaceMode
WorkspaceMode inferenceWorkspaceMode
CacheMode cacheMode
DataType dataType
int iterationCount
int epochCount
Layer layer
boolean miniBatch
int maxNumLineSearchIterations
long seed
OptimizationAlgorithm optimizationAlgo
List<E> variables
StepFunction stepFunction
boolean minimize
CacheMode cacheMode
DataType dataType
int iterationCount
int epochCount
double maxNorm
double min
double max
double rate
int numberOfTrials
double probabilityOfSuccess
double value
double mean
double std
double mean
double std
double gain
double mean
double std
double upper
double lower
double p
ISchedule pSchedule
double alpha
double lambda
double alphaPrime
double a
double b
boolean helperAllowFallback
double p
ISchedule pSchedule
boolean initializedHelper
int helperCountFail
double rate
ISchedule rateSchedule
double stddev
ISchedule stddevSchedule
double p
ISchedule pSchedule
long nInKeys
long nInValues
long nInQueries
long nOut
long headSize
int nHeads
boolean projectInput
WeightInit weightInit
ElementWiseVertex.Op op
GraphVertex underlying
int[] dimension
double eps
double eps
NeuralNetConfiguration layerConf
InputPreProcessor preProcessor
boolean outputVertex
int mergeAxis
InputPreProcessor preProcessor
char reshapeOrder
int[] newShape
int[] maskShape
double scaleFactor
double shiftFactor
int from
int to
int from
int stackSize
String inputName
String maskArrayInputName
String maskArrayInputName
long height
long width
long channels
CNN2DFormat format
Convolution3D.DataFormat dataFormat
long depth
long height
long width
long channels
long height
long width
long depth
long size
DataFormat timeDistributedFormat
long size
long timeSeriesLength
RNNFormat format
double forgetGateBiasInit
IActivation gateActivationFn
boolean helperAllowFallback
IActivation activationFn
double corruptionLevel
double sparsity
IActivation activationFn
IWeightInit weightInitFn
double biasInit
double gainInit
List<E> regularization
List<E> regularizationBias
IUpdater iUpdater
IUpdater biasUpdater
IWeightNoise weightNoise
GradientNormalization gradientNormalization
double gradientNormalizationThreshold
ILossFunction lossFn
boolean hasBias
LossFunctions.LossFunction lossFunction
double visibleBiasInit
IWeightInit weightInitFnRecurrent
RNNFormat rnnDataFormat
int[] size
double decay
double eps
boolean isMinibatch
double gamma
double beta
boolean lockGammaBeta
boolean cudnnAllowFallback
boolean useLogStd
CNN2DFormat cnn2DFormat
boolean hasBias
long inputCapsules
long inputCapsuleDimensions
int capsules
int capsuleDimensions
int routings
double alpha
double lambda
boolean gradientCheck
ILossFunction lossFn
Convolution3D.DataFormat dataFormat
ILossFunction lossFn
CNN2DFormat format
RNNFormat rnnDataFormat
ConvolutionMode mode
Convolution3D.DataFormat dataFormat
boolean hasBias
ConvolutionMode convolutionMode
int[] dilation
int[] kernelSize
int[] stride
int[] padding
boolean cudnnAllowFallback
CNN2DFormat cnn2dDataFormat
ConvolutionLayer.AlgoMode cudnnAlgoMode
ConvolutionLayer.FwdAlgo cudnnFwdAlgo
ConvolutionLayer.BwdFilterAlgo cudnnBwdFilterAlgo
ConvolutionLayer.BwdDataAlgo cudnnBwdDataAlgo
Convolution3D.DataFormat dataFormat
boolean hasLayerNorm
boolean hasBias
int depthMultiplier
boolean hasBias
int inputLength
boolean hasBias
boolean inferInputLength
RNNFormat outputFormat
long nIn
long nOut
DataFormat timeDistributedFormat
PoolingType poolingType
int[] poolingDimensions
int pnorm
boolean collapseDimensions
double forgetGateBiasInit
IActivation gateActivationFn
boolean helperAllowFallback
double forgetGateBiasInit
IActivation gateActivationFn
long nIn
long nOut
int nHeads
long headSize
boolean projectInput
int nQueries
long nIn
long nOut
Activation activation
int kernel
int stride
int padding
int paddingR
ConvolutionMode cm
int dilation
boolean hasBias
int inputSize
int outputSize
int featureDim
long nIn
long nOut
Activation activation
int[] kernel
int[] stride
int[] padding
int[] paddingBr
ConvolutionMode cm
int[] dilation
boolean hasBias
int[] inputSize
int[] outputSize
int featureDim
CNN2DFormat format
double n
double k
double beta
double alpha
boolean cudnnAllowFallback
CNN2DFormat dataFormat
ILossFunction lossFn
double forgetGateBiasInit
IActivation gateActivationFn
long[] inputShape
long[] sharedAxes
int nIn
int nOut
int[] kernelSize
int[] stride
int[] padding
int[] dilation
int inputChannels
int channels
boolean hasBias
int capsules
int capsuleDimensions
ConvolutionMode convolutionMode
boolean useRelu
double leak
long nIn
long nOut
int nHeads
long headSize
boolean projectInput
Activation activation
boolean hasBias
int timeSteps
RNNFormat rnnDataFormat
ILossFunction lossFn
RNNFormat rnnDataFormat
long nIn
long nOut
int nHeads
long headSize
boolean projectInput
int depthMultiplier
int[] blocks
int[][] padding
CNN2DFormat format
int blockSize
CNN2DFormat dataFormat
ConvolutionMode convolutionMode
PoolingType poolingType
int[] kernelSize
int[] stride
int[] padding
int[] dilation
boolean cudnnAllowFallback
Convolution3D.DataFormat dataFormat
ConvolutionMode convolutionMode
PoolingType poolingType
int[] kernelSize
int[] stride
int[] padding
int[] dilation
int pnorm
double eps
boolean cudnnAllowFallback
CNN2DFormat cnn2dDataFormat
boolean avgPoolIncludePadInDivisor
int[] size
int[] size
CNN2DFormat format
int[] size
Convolution3D.DataFormat dataFormat
int[] padding
int[] padding
int[] padding
CNN2DFormat dataFormat
int[] cropping
int[] cropping
CNN2DFormat dataFormat
int[] cropping
Layer layer
int n
RNNFormat dataFormat
double lambdaCoord
double lambdaNoObj
ILossFunction lossPositionScale
ILossFunction lossClassPredictions
INDArray boundingBoxes
Layer fwd
Layer bwd
Bidirectional.Mode mode
boolean hasLayerNorm
RNNFormat rnnDataFormat
List<E> regularization
List<E> regularizationBias
IUpdater updater
IUpdater biasUpdater
GradientNormalization gradientNormalization
double gradientNormalizationThreshold
SDLayerParams layerParams
WeightInit weightInit
Map<K,V> paramWeightInit
SDVertexParams vertexParams
String name
List<E> regularization
List<E> regularizationBias
IUpdater updater
IUpdater biasUpdater
GradientNormalization gradientNormalization
double gradientNormalizationThreshold
DataType dataType
double maskingValue
IActivation activationFn
int[] distributionSizes
ReconstructionDistribution[] reconstructionDistributions
int totalSize
IActivation activationFn
IActivation activationFn
IActivation activationFn
ILossFunction lossFunction
int[] encoderLayerSizes
int[] decoderLayerSizes
ReconstructionDistribution outputDistribution
IActivation pzxActivationFn
int numSamples
Layer underlying
int hiddenSize
double nu
int windowSize
double initialRValue
boolean configureR
int lastEpochSinceRUpdated
long inputDepth
long inputHeight
long inputWidth
long numChannels
boolean isNCDHW
long inputHeight
long inputWidth
long numChannels
CNN2DFormat format
long inputHeight
long inputWidth
long numChannels
RNNFormat rnnDataFormat
long product
InputPreProcessor[] inputPreProcessors
int inputDepth
int inputHeight
int inputWidth
int numChannels
boolean isNCDHW
long[] shape
long inputHeight
long inputWidth
long numChannels
long[] shape
RNNFormat rnnDataFormat
int inputHeight
int inputWidth
int numChannels
RNNFormat rnnDataFormat
int product
RNNFormat rnnDataFormat
org.nd4j.shade.jackson.databind.JsonDeserializer<T> defaultDeserializer
double weightRetainProb
ISchedule weightRetainProbSchedule
boolean applyToBiases
Distribution distribution
boolean applyToBias
boolean additive
private void readObject(ObjectInputStream ois) throws ClassNotFoundException, IOException
ClassNotFoundException
IOException
private void writeObject(ObjectOutputStream oos) throws IOException
IOException
ComputationGraphConfiguration configuration
boolean initCalled
INDArray flattenedParams
Gradient gradient
double score
boolean initDone
boolean clearTbpttState
WorkspaceConfiguration WS_LAYER_WORKING_MEM_CONFIG
WorkspaceConfiguration WS_LAYER_ACT_X_CONFIG
GraphVertex[] vertices
Map<K,V> verticesMap
int[] topologicalOrder
GraphIndices graphIndices
Layer[] layers
int numInputArrays
int numOutputArrays
NeuralNetConfiguration defaultConfiguration
Collection<E> trainingListeners
ComputationGraph graph
String vertexName
int vertexIndex
VertexIndices[] inputVertices
VertexIndices[] outputVertices
INDArray[] inputs
INDArray epsilon
boolean outputVertex
DataType dataType
GraphVertex underlying
int vertexIndex
int vertexEdgeNumber
ElementWiseVertex.Op op
int nInForwardPass
int[] dimension
double eps
double eps
Layer layer
InputPreProcessor layerPreProcessor
boolean setLayerInput
long[][] forwardPassShapes
int fwdPassRank
int mergeAxis
InputPreProcessor preProcessor
char order
int[] newShape
int[] maskShape
double scaleFactor
double shiftFactor
long[][] lastInputShapes
int from
int to
long[] forwardShape
long from
int stackSize
long[] forwardShape
long step
String inputName
int inputVertexIndex
String inputName
int inputIdx
long[] fwdPassShape
int[] fwdPassTimeSteps
String inputName
int inputIdx
INDArray input
INDArray preOutput
NeuralNetConfiguration conf
boolean dropoutApplied
Collection<E> trainingListeners
int index
INDArray maskArray
MaskState maskState
CacheMode cacheMode
boolean inputModificationAllowed
DataType dataType
int iterationCount
int epochCount
boolean logUpdate
boolean logFit
boolean logTestMode
boolean logGradient
Gradient zeroGradient
boolean logUpdate
boolean logFit
boolean logTestMode
boolean logGradient
Gradient zeroGradient
INDArray labels
double fullNetworkRegularizationScore
INDArray labels
INDArray labels
INDArray i2d
ConvolutionHelper helper
int helperCountFail
ConvolutionMode convolutionMode
int[] cropping
int[] cropping
int[] cropping
int[] padding
int[] padding
ConvolutionMode convolutionMode
SubsamplingHelper helper
int helperCountFail
ConvolutionMode convolutionMode
long[] axes
INDArray vector
INDArray prediction
List<E> children
double error
Tree parent
String headWord
String value
String label
String type
int goldLabel
List<E> tokens
List<E> tags
String parse
int begin
int end
int[] indexes
LocalResponseNormalizationHelper helper
int helperCountFail
INDArray labels
double fullNetRegTerm
double score
IActivation activation
ILossFunction lossFunction
int batchWindowSizeIndex
INDArray window
int[] poolingDimensions
PoolingType poolingType
int pNorm
Map<K,V> stateMap
Map<K,V> tBpttStateMap
int helperCountFail
NeuralNetConfiguration conf
Layer fwd
Layer bwd
Bidirectional layerConf
INDArray paramsView
INDArray gradientView
INDArray input
INDArray outFwd
INDArray outBwd
FwdPassReturn cachedPassForward
FwdPassReturn cachedPassBackward
FwdPassReturn cachedFwdPass
int[] lastTimeStepIdxs
long[] origOutputShape
LSTMHelper helper
FwdPassReturn cachedFwdPass
double maskingValue
INDArray labels
RNNFormat rnnDataFormat
SameDiffVertex config
SameDiff sameDiff
SDVariable outputVar
ExternalErrorsFunction fn
String outputKey
Map<K,V> inputVars
INDArray[] maskArrays
INDArray params
INDArray gradients
Map<K,V> paramTable
Map<K,V> gradTable
MaskState currentMaskState
int minibatchSize
double fullNetRegTerm
Gradient emptyGradient
INDArray input
INDArray paramsFlattened
INDArray gradientsFlattened
Map<K,V> params
NeuralNetConfiguration conf
double score
ConvexOptimizer optimizer
Gradient gradient
Collection<E> trainingListeners
int index
INDArray maskArray
Solver solver
int[] encoderLayerSizes
int[] decoderLayerSizes
ReconstructionDistribution reconstructionDistribution
IActivation pzxActivationFn
int numSamples
CacheMode cacheMode
DataType dataType
boolean zeroedPretrainParamGradients
Map<K,V> weightNoiseParams
int iterationCount
int epochCount
Layer underlying
private void readObject(ObjectInputStream ois) throws ClassNotFoundException, IOException
ClassNotFoundException
IOException
private void writeObject(ObjectOutputStream oos) throws IOException
IOException
Layer[] layers
LinkedHashMap<K,V> layerMap
INDArray input
INDArray labels
boolean initCalled
Collection<E> trainingListeners
NeuralNetConfiguration defaultConfiguration
MultiLayerConfiguration layerWiseConfigurations
Gradient gradient
double score
boolean initDone
INDArray flattenedParams
boolean clearTbpttState
INDArray mask
int layerIndex
WorkspaceConfiguration WS_LAYER_WORKING_MEM_CONFIG
WorkspaceConfiguration WS_LAYER_ACT_X_CONFIG
Trainable[] orderedLayers
double value
Distribution distribution
Double scale
Double scale
Double scale
Double scale
Double scale
Double scale
Double scale
INDArray embeddings
EmbeddingInitializer serializableInit
EmbeddingInitializer nonSerializableInit
File rootDir
org.deeplearning4j.optimize.listeners.CheckpointListener.KeepMode keepMode
int keepLast
int keepEvery
boolean logSaving
boolean deleteExisting
Integer saveEveryNEpochs
Integer saveEveryNIterations
boolean saveEveryNIterSinceLast
Long saveEveryAmount
TimeUnit saveEveryUnit
Long saveEveryMs
boolean saveEverySinceLast
int lastCheckpointNum
File checkpointRecordFile
Checkpoint lastCheckpoint
long startTime
int startIter
Long lastSaveEveryMsNoSinceLast
int frequency
boolean logScore
it.unimi.dsi.fastutil.ints.IntArrayList listIteration
it.unimi.dsi.fastutil.doubles.DoubleArrayList listScore
Collection<E> listeners
FailureTestingListener.FailureTrigger trigger
FailureTestingListener.FailureMode failureMode
boolean initialized
String hostName
boolean shouldFail
boolean isEpoch
int count
FailureTestingListener.CallType callType
double probability
Random rng
long msSinceInit
long initTime
String userName
boolean shouldFail
private void readObject(ObjectInputStream in) throws IOException, ClassNotFoundException
IOException
ClassNotFoundException
int frequency
boolean reportScore
boolean reportGC
boolean reportSample
boolean reportBatch
boolean reportIteration
boolean reportEtl
boolean reportTime
int printIterations
long timerEE
long timerES
long timerFF
long timerBP
long timerIteration
SleepyTrainingListener.SleepMode sleepMode
SleepyTrainingListener.TimeMode timeMode
long start
int iterationCount
AtomicLong iterationCounter
Model layer
StepFunction stepFunction
ConvexOptimizer optimizer
int maxIterations
double stepMax
boolean minObjectiveFunction
double relTolx
double absTolx
double ALF
NeuralNetConfiguration conf
StepFunction stepFunction
Collection<E> trainingListeners
Model model
BackTrackLineSearch lineMaximizer
Updater updater
ComputationGraphUpdater computationGraphUpdater
double step
int batchSize
double score
double oldScore
double stepMax
Map<K,V> searchState
GradientsAccumulator accumulator
int m
MessageHandler handler
long[] shape
char ordering
int parties
CyclicBarrier barrier
AtomicLong firstOne
List<E> candidates
ReentrantReadWriteLock updatesLock
AtomicBoolean hasSomething
ThreadLocal<T> accumulator
int parties
MessageHandler handler
List<E> messages
List<E> workspaces
List<E> locks
AtomicInteger workersCounter
ThreadLocal<T> index
long initialMemory
int queueSize
Integer boundary
boolean encodingDebugMode
IndexedTail externalSource
AtomicBoolean isFirst
AtomicBoolean isDone
AtomicInteger barrier
AtomicInteger secondary
AtomicBoolean registered
AtomicBoolean bypassMode
AtomicInteger currentConsumers
AtomicThrowable throwable
boolean isDebug
boolean relocatable
ThreadLocal<T> updatesApplied
AtomicBoolean externalUpdatesAvailable
WorkspaceConfiguration appliedConfiguration
ThresholdAlgorithm initialThresholdAlgorithm
ResidualPostProcessor initialResidualPostProcessor
Integer boundary
boolean encodingDebugMode
AtomicInteger atomicBoundary
ThreadLocal<T> thresholdAlgorithm
Map<K,V> allThreadThresholdAlgorithms
ThreadLocal<T> residualPostProcessor
ThreadLocal<T> iterations
ThreadLocal<T> lastStep
ThreadLocal<T> lastThreshold
ThreadLocal<T> lastSparsityRatio
ThreadLocal<T> currentThreshold
ThreadLocal<T> bitmapMode
ThreadLocal<T> lastIterWasDense
AtomicLong lastThresholdLogTime
double thresholdMultipleClipValue
int frequency
double initialThreshold
double minTargetSparsity
double maxTargetSparsity
double decayRate
double lastThreshold
double lastSparsity
double threshold
FixedThresholdAlgorithm instance
double initialThreshold
double sparsityTarget
double decayRate
double lastThreshold
double lastSparsity
Copyright © 2020. All rights reserved.