public abstract class AbstractLayer<LayerConfT extends Layer> extends Object implements Layer
Layer.TrainingMode, Layer.Type| Modifier and Type | Field and Description |
|---|---|
protected CacheMode |
cacheMode |
protected NeuralNetConfiguration |
conf |
protected DataType |
dataType |
protected boolean |
dropoutApplied |
protected int |
epochCount |
protected int |
index |
protected INDArray |
input |
protected boolean |
inputModificationAllowed |
protected int |
iterationCount |
protected INDArray |
maskArray |
protected MaskState |
maskState |
protected INDArray |
preOutput |
protected Collection<TrainingListener> |
trainingListeners |
| Constructor and Description |
|---|
AbstractLayer(NeuralNetConfiguration conf,
DataType dataType) |
| Modifier and Type | Method and Description |
|---|---|
INDArray |
activate(INDArray input,
boolean training,
LayerWorkspaceMgr workspaceMgr)
Perform forward pass and return the activations array with the specified input
|
void |
addListeners(TrainingListener... listeners)
This method ADDS additional TrainingListener to existing listeners
|
void |
allowInputModification(boolean allow)
A performance optimization: mark whether the layer is allowed to modify its input array in-place.
|
void |
applyConstraints(int iteration,
int epoch)
Apply any constraints to the model
|
protected void |
applyDropOutIfNecessary(boolean training,
LayerWorkspaceMgr workspaceMgr) |
protected void |
applyMask(INDArray to) |
void |
assertInputSet(boolean backprop) |
protected INDArray |
backpropDropOutIfPresent(INDArray epsilon) |
int |
batchSize()
The current inputs batch size
|
double |
calcRegularizationScore(boolean backpropParamsOnly)
Calculate the regularization component of the score, for the parameters in this layer
For example, the L1, L2 and/or weight decay components of the loss function |
void |
clear()
Clear input
|
void |
close() |
void |
computeGradientAndScore(LayerWorkspaceMgr workspaceMgr)
Update the score
|
NeuralNetConfiguration |
conf()
The configuration for the neural network
|
Pair<INDArray,MaskState> |
feedForwardMaskArray(INDArray maskArray,
MaskState currentMaskState,
int minibatchSize)
Feed forward the input mask array, setting in the layer as appropriate.
|
void |
fit()
All models have a fit method
|
void |
fit(INDArray input,
LayerWorkspaceMgr workspaceMgr)
Fit the model to the given data
|
TrainingConfig |
getConfig() |
int |
getEpochCount() |
INDArray |
getGradientsViewArray() |
LayerHelper |
getHelper() |
int |
getIndex()
Get the layer index.
|
INDArray |
getInput() |
int |
getInputMiniBatchSize()
Get current/last input mini-batch size, as set by setInputMiniBatchSize(int)
|
Collection<TrainingListener> |
getListeners()
Get the iteration listeners for this layer.
|
INDArray |
getMaskArray() |
ConvexOptimizer |
getOptimizer()
Returns this models optimizer
|
INDArray |
getParam(String param)
Get the parameter
|
Gradient |
gradient()
Get the gradient.
|
Pair<Gradient,Double> |
gradientAndScore()
Get the gradient and score
|
void |
init()
Init the model
|
INDArray |
input()
The input/feature matrix for the model
|
LayerConfT |
layerConf() |
protected String |
layerId() |
long |
numParams()
The number of parameters for the model
|
long |
numParams(boolean backwards)
the number of parameters for the model
|
INDArray |
params()
Returns the parameters of the neural network as a flattened row vector
|
Map<String,INDArray> |
paramTable()
The param table
|
Map<String,INDArray> |
paramTable(boolean backpropParamsOnly)
Table of parameters by key, for backprop
For many models (dense layers, etc) - all parameters are backprop parameters
|
double |
score()
The score for the model
|
void |
setBackpropGradientsViewArray(INDArray gradients)
Set the gradients array as a view of the full (backprop) network parameters
NOTE: this is intended to be used internally in MultiLayerNetwork and ComputationGraph, not by users.
|
void |
setCacheMode(CacheMode mode)
This method sets given CacheMode for current layer
|
void |
setConf(NeuralNetConfiguration conf)
Setter for the configuration
|
void |
setEpochCount(int epochCount)
Set the current epoch count (number of epochs passed ) for the layer/network
|
void |
setIndex(int index)
Set the layer index.
|
void |
setInput(INDArray input,
LayerWorkspaceMgr workspaceMgr)
Set the layer input.
|
void |
setInputMiniBatchSize(int size)
Set current/last input mini-batch size.
Used for score and gradient calculations. |
void |
setListeners(Collection<TrainingListener> listeners)
Set the
TrainingListeners for this model. |
void |
setListeners(TrainingListener... listeners)
Set the
TrainingListeners for this model. |
void |
setMaskArray(INDArray maskArray)
Set the mask array.
|
void |
setParam(String key,
INDArray val)
Set the parameter with a new ndarray
|
void |
setParams(INDArray params)
Set the parameters for this model.
|
protected void |
setParams(INDArray params,
char order) |
void |
setParamsViewArray(INDArray params)
Set the initial parameters array as a view of the full (backprop) network parameters
NOTE: this is intended to be used internally in MultiLayerNetwork and ComputationGraph, not by users.
|
void |
setParamTable(Map<String,INDArray> paramTable)
Setter for the param table
|
Layer.Type |
type()
Returns the layer type
|
void |
update(Gradient gradient)
Update layer weights and biases with gradient change
|
void |
update(INDArray gradient,
String paramType)
Perform one update applying the gradient
|
boolean |
updaterDivideByMinibatch(String paramName)
DL4J layers typically produce the sum of the gradients during the backward pass for each layer, and if required
(if minibatch=true) then divide by the minibatch size.
However, there are some exceptions, such as the batch norm mean/variance estimate parameters: these "gradients" are actually not gradients, but are updates to be applied directly to the parameter vector. |
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitactivate, backpropGradient, clearNoiseWeightParams, getIterationCount, isPretrainLayer, setIterationCountprotected INDArray input
protected INDArray preOutput
protected NeuralNetConfiguration conf
protected boolean dropoutApplied
protected Collection<TrainingListener> trainingListeners
protected int index
protected INDArray maskArray
protected MaskState maskState
protected CacheMode cacheMode
protected boolean inputModificationAllowed
protected DataType dataType
protected int iterationCount
protected int epochCount
public AbstractLayer(NeuralNetConfiguration conf, DataType dataType)
public void setCacheMode(CacheMode mode)
LayersetCacheMode in interface Layerpublic LayerConfT layerConf()
public TrainingConfig getConfig()
protected String layerId()
public INDArray getInput()
public int getEpochCount()
getEpochCount in interface Layerpublic void setEpochCount(int epochCount)
LayersetEpochCount in interface Layerpublic void setInput(INDArray input, LayerWorkspaceMgr workspaceMgr)
Layerpublic int getIndex()
Layerpublic void setIndex(int index)
Layerpublic Collection<TrainingListener> getListeners()
LayergetListeners in interface Layerpublic void setListeners(Collection<TrainingListener> listeners)
LayerTrainingListeners for this model. If any listeners have previously been set, they will be
replaced by this methodsetListeners in interface LayersetListeners in interface Modelpublic void addListeners(TrainingListener... listeners)
addListeners in interface Modellisteners - public void setListeners(TrainingListener... listeners)
LayerTrainingListeners for this model. If any listeners have previously been set, they will be
replaced by this methodsetListeners in interface LayersetListeners in interface Modelpublic void computeGradientAndScore(LayerWorkspaceMgr workspaceMgr)
ModelcomputeGradientAndScore in interface Modelpublic void update(Gradient gradient)
Modelpublic void update(INDArray gradient, String paramType)
Modelpublic ConvexOptimizer getOptimizer()
ModelgetOptimizer in interface Modelpublic void setConf(NeuralNetConfiguration conf)
Modelpublic INDArray params()
public INDArray getParam(String param)
Modelpublic void setParam(String key, INDArray val)
Modelpublic void setParams(INDArray params)
Modelprotected void setParams(INDArray params, char order)
public void setParamsViewArray(INDArray params)
ModelsetParamsViewArray in interface Modelparams - a 1 x nParams row vector that is a view of the larger (MLN/CG) parameters arraypublic INDArray getGradientsViewArray()
getGradientsViewArray in interface ModelgetGradientsViewArray in interface Trainablepublic void setBackpropGradientsViewArray(INDArray gradients)
ModelsetBackpropGradientsViewArray in interface Modelgradients - a 1 x nParams row vector that is a view of the larger (MLN/CG) gradients arraypublic void setParamTable(Map<String,INDArray> paramTable)
ModelsetParamTable in interface Modelpublic Map<String,INDArray> paramTable()
ModelparamTable in interface Modelpublic Map<String,INDArray> paramTable(boolean backpropParamsOnly)
ModelparamTable in interface ModelparamTable in interface TrainablebackpropParamsOnly - If true, return backprop params only. If false: return all params (equivalent to
paramsTable())protected void applyMask(INDArray to)
public INDArray activate(INDArray input, boolean training, LayerWorkspaceMgr workspaceMgr)
Layeractivate in interface Layerinput - the input to usetraining - train or test modeworkspaceMgr - Workspace manager.ArrayType.ACTIVATIONS workspace via the workspace managerpublic double calcRegularizationScore(boolean backpropParamsOnly)
LayercalcRegularizationScore in interface LayerbackpropParamsOnly - If true: calculate regularization score based on backprop params only. If false: calculate
based on all params (including pretrain params, if any)public int batchSize()
Modelpublic NeuralNetConfiguration conf()
Modelpublic void clear()
Modelprotected void applyDropOutIfNecessary(boolean training,
LayerWorkspaceMgr workspaceMgr)
public Layer.Type type()
Layerpublic long numParams()
public long numParams(boolean backwards)
Modelpublic void fit(INDArray input, LayerWorkspaceMgr workspaceMgr)
Modelpublic Pair<Gradient,Double> gradientAndScore()
ModelgradientAndScore in interface Modelpublic INDArray input()
Modelpublic void setInputMiniBatchSize(int size)
LayersetInputMiniBatchSize in interface Layerpublic int getInputMiniBatchSize()
LayergetInputMiniBatchSize in interface LayerLayer.setInputMiniBatchSize(int)public void setMaskArray(INDArray maskArray)
LayerLayer.feedForwardMaskArray(INDArray, MaskState, int) should be used in
preference to this.setMaskArray in interface LayermaskArray - Mask array to setpublic INDArray getMaskArray()
getMaskArray in interface Layerpublic Pair<INDArray,MaskState> feedForwardMaskArray(INDArray maskArray, MaskState currentMaskState, int minibatchSize)
LayerfeedForwardMaskArray in interface LayermaskArray - Mask array to setcurrentMaskState - Current state of the mask - see MaskStateminibatchSize - Current minibatch size. Needs to be known as it cannot always be inferred from the activations
array due to reshaping (such as a DenseLayer within a recurrent neural network)public Gradient gradient()
ModelModel.computeGradientAndScore(LayerWorkspaceMgr) } .public void fit()
Modelpublic double score()
Modelpublic void applyConstraints(int iteration,
int epoch)
ModelapplyConstraints in interface Modelpublic void assertInputSet(boolean backprop)
public void allowInputModification(boolean allow)
LayerallowInputModification in interface Layerallow - If true: the input array is safe to modify. If false: the input array should be copied before it
is modified (i.e., in-place modifications are un-safe)public LayerHelper getHelper()
public boolean updaterDivideByMinibatch(String paramName)
TrainableupdaterDivideByMinibatch in interface TrainableparamName - Name of the parameterCopyright © 2020. All rights reserved.