public class ZeroPaddingLayer extends AbstractLayer<ZeroPaddingLayer>
Layer.TrainingMode, Layer.TypecacheMode, conf, dataType, dropoutApplied, epochCount, index, input, inputModificationAllowed, iterationCount, maskArray, maskState, preOutput, trainingListeners| Constructor and Description |
|---|
ZeroPaddingLayer(NeuralNetConfiguration conf,
DataType dataType) |
| Modifier and Type | Method and Description |
|---|---|
INDArray |
activate(boolean training,
LayerWorkspaceMgr workspaceMgr)
Perform forward pass and return the activations array with the last set input
|
Pair<Gradient,INDArray> |
backpropGradient(INDArray epsilon,
LayerWorkspaceMgr workspaceMgr)
Calculate the gradient relative to the error in the next layer
|
double |
calcRegularizationScore(boolean backpropParamsOnly)
Calculate the regularization component of the score, for the parameters in this layer
For example, the L1, L2 and/or weight decay components of the loss function |
void |
clearNoiseWeightParams() |
Layer |
clone() |
boolean |
isPretrainLayer()
Returns true if the layer can be trained in an unsupervised/pretrain manner (AE, VAE, etc)
|
Layer.Type |
type()
Returns the layer type
|
activate, addListeners, allowInputModification, applyConstraints, applyDropOutIfNecessary, applyMask, assertInputSet, backpropDropOutIfPresent, batchSize, clear, close, computeGradientAndScore, conf, feedForwardMaskArray, fit, fit, getConfig, getEpochCount, getGradientsViewArray, getHelper, getIndex, getInput, getInputMiniBatchSize, getListeners, getMaskArray, getOptimizer, getParam, gradient, gradientAndScore, init, input, layerConf, layerId, numParams, numParams, params, paramTable, paramTable, score, setBackpropGradientsViewArray, setCacheMode, setConf, setEpochCount, setIndex, setInput, setInputMiniBatchSize, setListeners, setListeners, setMaskArray, setParam, setParams, setParams, setParamsViewArray, setParamTable, update, update, updaterDivideByMinibatchequals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitgetIterationCount, setIterationCountpublic ZeroPaddingLayer(NeuralNetConfiguration conf, DataType dataType)
public boolean isPretrainLayer()
Layerpublic void clearNoiseWeightParams()
public Layer.Type type()
Layertype in interface Layertype in class AbstractLayer<ZeroPaddingLayer>public Pair<Gradient,INDArray> backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)
Layerepsilon - w^(L+1)*delta^(L+1). Or, equiv: dC/da, i.e., (dC/dz)*(dz/da) = dC/da, where C
is cost function a=sigma(z) is activation.workspaceMgr - Workspace managerArrayType.ACTIVATION_GRAD workspace via the workspace managerpublic INDArray activate(boolean training, LayerWorkspaceMgr workspaceMgr)
Layertraining - training or test modeworkspaceMgr - Workspace managerArrayType.ACTIVATIONS workspace via the workspace managerpublic double calcRegularizationScore(boolean backpropParamsOnly)
LayercalcRegularizationScore in interface LayercalcRegularizationScore in class AbstractLayer<ZeroPaddingLayer>backpropParamsOnly - If true: calculate regularization score based on backprop params only. If false: calculate
based on all params (including pretrain params, if any)Copyright © 2020. All rights reserved.