public class SubsamplingLayer extends AbstractLayer<SubsamplingLayer>
Layer.TrainingMode, Layer.Type| Modifier and Type | Field and Description |
|---|---|
protected ConvolutionMode |
convolutionMode |
protected SubsamplingHelper |
helper |
protected int |
helperCountFail |
cacheMode, conf, dataType, dropoutApplied, epochCount, index, input, inputModificationAllowed, iterationCount, maskArray, maskState, preOutput, trainingListeners| Constructor and Description |
|---|
SubsamplingLayer(NeuralNetConfiguration conf,
DataType dataType) |
| Modifier and Type | Method and Description |
|---|---|
INDArray |
activate(boolean training,
LayerWorkspaceMgr workspaceMgr)
Perform forward pass and return the activations array with the last set input
|
Pair<Gradient,INDArray> |
backpropGradient(INDArray epsilon,
LayerWorkspaceMgr workspaceMgr)
Calculate the gradient relative to the error in the next layer
|
double |
calcRegularizationScore(boolean backpropOnlyParams)
Calculate the regularization component of the score, for the parameters in this layer
For example, the L1, L2 and/or weight decay components of the loss function |
void |
clearNoiseWeightParams() |
Pair<INDArray,MaskState> |
feedForwardMaskArray(INDArray maskArray,
MaskState currentMaskState,
int minibatchSize)
Feed forward the input mask array, setting in the layer as appropriate.
|
void |
fit()
All models have a fit method
|
void |
fit(INDArray input,
LayerWorkspaceMgr workspaceMgr)
Fit the model to the given data
|
LayerHelper |
getHelper() |
INDArray |
getParam(String param)
Get the parameter
|
Gradient |
gradient()
Get the gradient.
|
boolean |
isPretrainLayer()
Returns true if the layer can be trained in an unsupervised/pretrain manner (AE, VAE, etc)
|
long |
numParams()
The number of parameters for the model
|
INDArray |
params()
Returns the parameters of the neural network as a flattened row vector
|
double |
score()
The score for the model
|
void |
setParams(INDArray params)
Set the parameters for this model.
|
Layer.Type |
type()
Returns the layer type
|
void |
update(INDArray gradient,
String paramType)
Perform one update applying the gradient
|
activate, addListeners, allowInputModification, applyConstraints, applyDropOutIfNecessary, applyMask, assertInputSet, backpropDropOutIfPresent, batchSize, clear, close, computeGradientAndScore, conf, getConfig, getEpochCount, getGradientsViewArray, getIndex, getInput, getInputMiniBatchSize, getListeners, getMaskArray, getOptimizer, gradientAndScore, init, input, layerConf, layerId, numParams, paramTable, paramTable, setBackpropGradientsViewArray, setCacheMode, setConf, setEpochCount, setIndex, setInput, setInputMiniBatchSize, setListeners, setListeners, setMaskArray, setParam, setParams, setParamsViewArray, setParamTable, update, updaterDivideByMinibatchclone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitgetIterationCount, setIterationCountprotected SubsamplingHelper helper
protected int helperCountFail
protected ConvolutionMode convolutionMode
public SubsamplingLayer(NeuralNetConfiguration conf, DataType dataType)
public double calcRegularizationScore(boolean backpropOnlyParams)
LayercalcRegularizationScore in interface LayercalcRegularizationScore in class AbstractLayer<SubsamplingLayer>backpropOnlyParams - If true: calculate regularization score based on backprop params only. If false: calculate
based on all params (including pretrain params, if any)public Layer.Type type()
Layertype in interface Layertype in class AbstractLayer<SubsamplingLayer>public Pair<Gradient,INDArray> backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)
Layerepsilon - w^(L+1)*delta^(L+1). Or, equiv: dC/da, i.e., (dC/dz)*(dz/da) = dC/da, where C
is cost function a=sigma(z) is activation.workspaceMgr - Workspace managerArrayType.ACTIVATION_GRAD workspace via the workspace managerpublic INDArray activate(boolean training, LayerWorkspaceMgr workspaceMgr)
Layertraining - training or test modeworkspaceMgr - Workspace managerArrayType.ACTIVATIONS workspace via the workspace managerpublic boolean isPretrainLayer()
Layerpublic void clearNoiseWeightParams()
public LayerHelper getHelper()
getHelper in interface LayergetHelper in class AbstractLayer<SubsamplingLayer>public Gradient gradient()
ModelModel.computeGradientAndScore(LayerWorkspaceMgr) } .gradient in interface Modelgradient in class AbstractLayer<SubsamplingLayer>public void fit()
Modelfit in interface Modelfit in class AbstractLayer<SubsamplingLayer>public long numParams()
AbstractLayernumParams in interface ModelnumParams in interface TrainablenumParams in class AbstractLayer<SubsamplingLayer>public void fit(INDArray input, LayerWorkspaceMgr workspaceMgr)
Modelfit in interface Modelfit in class AbstractLayer<SubsamplingLayer>input - the data to fit the model topublic double score()
Modelscore in interface Modelscore in class AbstractLayer<SubsamplingLayer>public void update(INDArray gradient, String paramType)
Modelupdate in interface Modelupdate in class AbstractLayer<SubsamplingLayer>gradient - the gradient to applypublic INDArray params()
AbstractLayerparams in interface Modelparams in interface Trainableparams in class AbstractLayer<SubsamplingLayer>public INDArray getParam(String param)
ModelgetParam in interface ModelgetParam in class AbstractLayer<SubsamplingLayer>param - the key of the parameterpublic void setParams(INDArray params)
ModelsetParams in interface ModelsetParams in class AbstractLayer<SubsamplingLayer>params - the parameters for the modelpublic Pair<INDArray,MaskState> feedForwardMaskArray(INDArray maskArray, MaskState currentMaskState, int minibatchSize)
LayerfeedForwardMaskArray in interface LayerfeedForwardMaskArray in class AbstractLayer<SubsamplingLayer>maskArray - Mask array to setcurrentMaskState - Current state of the mask - see MaskStateminibatchSize - Current minibatch size. Needs to be known as it cannot always be inferred from the activations
array due to reshaping (such as a DenseLayer within a recurrent neural network)Copyright © 2020. All rights reserved.