public class Deconvolution3DLayer extends BaseLayer<Deconvolution3D>
Layer.TrainingMode, Layer.Type
gradient, gradientsFlattened, gradientViews, optimizer, params, paramsFlattened, score, solver, weightNoiseParams
cacheMode, conf, dataType, dropoutApplied, epochCount, index, input, inputModificationAllowed, iterationCount, maskArray, maskState, preOutput, trainingListeners
Constructor and Description |
---|
Deconvolution3DLayer(NeuralNetConfiguration conf,
DataType dataType) |
Modifier and Type | Method and Description |
---|---|
INDArray |
activate(boolean training,
LayerWorkspaceMgr workspaceMgr)
Perform forward pass and return the activations array with the last set input
|
Pair<Gradient,INDArray> |
backpropGradient(INDArray epsilon,
LayerWorkspaceMgr workspaceMgr)
Calculate the gradient relative to the error in the next layer
|
boolean |
isPretrainLayer()
Returns true if the layer can be trained in an unsupervised/pretrain manner (AE, VAE, etc)
|
protected INDArray |
preOutput(boolean training,
LayerWorkspaceMgr workspaceMgr) |
calcRegularizationScore, clear, clearNoiseWeightParams, clone, computeGradientAndScore, fit, fit, getGradientsViewArray, getOptimizer, getParam, getParamWithNoise, gradient, hasBias, hasLayerNorm, layerConf, numParams, params, paramTable, paramTable, preOutputWithPreNorm, score, setBackpropGradientsViewArray, setParam, setParams, setParams, setParamsViewArray, setParamTable, setScoreWithZ, toString, update, update
activate, addListeners, allowInputModification, applyConstraints, applyDropOutIfNecessary, applyMask, assertInputSet, backpropDropOutIfPresent, batchSize, close, conf, feedForwardMaskArray, getConfig, getEpochCount, getHelper, getIndex, getInput, getInputMiniBatchSize, getListeners, getMaskArray, gradientAndScore, init, input, layerId, numParams, setCacheMode, setConf, setEpochCount, setIndex, setInput, setInputMiniBatchSize, setListeners, setListeners, setMaskArray, type, updaterDivideByMinibatch
equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait
getIterationCount, setIterationCount
public Deconvolution3DLayer(NeuralNetConfiguration conf, DataType dataType)
public Pair<Gradient,INDArray> backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)
Layer
backpropGradient
in interface Layer
backpropGradient
in class BaseLayer<Deconvolution3D>
epsilon
- w^(L+1)*delta^(L+1). Or, equiv: dC/da, i.e., (dC/dz)*(dz/da) = dC/da, where C
is cost function a=sigma(z) is activation.workspaceMgr
- Workspace managerArrayType.ACTIVATION_GRAD
workspace via the workspace managerprotected INDArray preOutput(boolean training, LayerWorkspaceMgr workspaceMgr)
preOutput
in class BaseLayer<Deconvolution3D>
public INDArray activate(boolean training, LayerWorkspaceMgr workspaceMgr)
Layer
activate
in interface Layer
activate
in class BaseLayer<Deconvolution3D>
training
- training or test modeworkspaceMgr
- Workspace managerArrayType.ACTIVATIONS
workspace via the workspace managerpublic boolean isPretrainLayer()
Layer
Copyright © 2020. All rights reserved.