public class VariationalAutoencoder extends BasePretrainNetwork
See: Kingma & Welling, 2013: Auto-Encoding Variational Bayes - https://arxiv.org/abs/1312.6114
This implementation allows multiple encoder and decoder layers, the number and sizes of which can be set independently.
A note on scores during pretraining: This implementation minimizes the negative of the variational lower bound objective as described in Kingma & Welling; the mathematics in that paper is based on maximization of the variational lower bound instead. Thus, scores reported during pretraining in DL4J are the negative of the variational lower bound equation in the paper. The backpropagation and learning procedure is otherwise as described there.
| Modifier and Type | Class and Description |
|---|---|
static class |
VariationalAutoencoder.Builder |
lossFunction, visibleBiasInitnIn, nOut, timeDistributedFormatactivationFn, biasInit, biasUpdater, gainInit, gradientNormalization, gradientNormalizationThreshold, iUpdater, regularization, regularizationBias, weightInitFn, weightNoiseconstraints, iDropout, layerName| Modifier and Type | Method and Description |
|---|---|
LayerMemoryReport |
getMemoryReport(InputType inputType)
This is a report of the estimated memory consumption for the given layer
|
ParamInitializer |
initializer() |
Layer |
instantiate(NeuralNetConfiguration conf,
Collection<TrainingListener> trainingListeners,
int layerIndex,
INDArray layerParamsView,
boolean initializeParams,
DataType networkDataType) |
boolean |
isPretrainParam(String paramName)
Is the specified parameter a layerwise pretraining only parameter?
For example, visible bias params in an autoencoder (or, decoder params in a variational autoencoder) aren't used during supervised backprop. Layers (like DenseLayer, etc) with no pretrainable parameters will return false for all (valid) inputs. |
getOutputType, getPreProcessorForInputType, setNInclone, getGradientNormalization, getRegularizationByParam, getUpdaterByParam, resetLayerDefaultConfiginitializeConstraints, setDataTypeequals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitgetGradientNormalizationThreshold, getLayerNamepublic Layer instantiate(NeuralNetConfiguration conf, Collection<TrainingListener> trainingListeners, int layerIndex, INDArray layerParamsView, boolean initializeParams, DataType networkDataType)
instantiate in class Layerpublic ParamInitializer initializer()
initializer in class Layerpublic boolean isPretrainParam(String paramName)
LayerisPretrainParam in interface TrainingConfigisPretrainParam in class BasePretrainNetworkparamName - Parameter name/keypublic LayerMemoryReport getMemoryReport(InputType inputType)
LayergetMemoryReport in class LayerinputType - Input type to the layer. Memory consumption is often a function of the input
typeCopyright © 2020. All rights reserved.