public class DropoutLayer extends FeedForwardLayer
IDropout instance. See the IDropout instances for details:DropoutAlphaDropOutGaussianDropoutGaussianNoiseSpatialDropout| Modifier and Type | Class and Description |
|---|---|
static class |
DropoutLayer.Builder |
nIn, nOut, timeDistributedFormatactivationFn, biasInit, biasUpdater, gainInit, gradientNormalization, gradientNormalizationThreshold, iUpdater, regularization, regularizationBias, weightInitFn, weightNoiseconstraints, iDropout, layerName| Constructor and Description |
|---|
DropoutLayer(double activationRetainProb) |
DropoutLayer(IDropout dropout) |
| Modifier and Type | Method and Description |
|---|---|
DropoutLayer |
clone() |
LayerMemoryReport |
getMemoryReport(InputType inputType)
This is a report of the estimated memory consumption for the given layer
|
InputType |
getOutputType(int layerIndex,
InputType inputType)
For a given type of input to this layer, what is the type of the output?
|
InputPreProcessor |
getPreProcessorForInputType(InputType inputType)
For the given type of input to this layer, what preprocessor (if any) is required?
Returns null if no preprocessor is required, otherwise returns an appropriate InputPreProcessor for this layer, such as a CnnToFeedForwardPreProcessor |
List<Regularization> |
getRegularizationByParam(String paramName)
Get the regularization types (l1/l2/weight decay) for the given parameter.
|
ParamInitializer |
initializer() |
Layer |
instantiate(NeuralNetConfiguration conf,
Collection<TrainingListener> trainingListeners,
int layerIndex,
INDArray layerParamsView,
boolean initializeParams,
DataType networkDataType) |
boolean |
isPretrainParam(String paramName)
Is the specified parameter a layerwise pretraining only parameter?
For example, visible bias params in an autoencoder (or, decoder params in a variational autoencoder) aren't used during supervised backprop. Layers (like DenseLayer, etc) with no pretrainable parameters will return false for all (valid) inputs. |
void |
setNIn(InputType inputType,
boolean override)
Set the nIn value (number of inputs, or input channels for CNNs) based on the given input
type
|
getGradientNormalization, getUpdaterByParam, resetLayerDefaultConfiginitializeConstraints, setDataTypeequals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitgetGradientNormalizationThreshold, getLayerNamepublic DropoutLayer(double activationRetainProb)
public DropoutLayer(IDropout dropout)
public DropoutLayer clone()
public Layer instantiate(NeuralNetConfiguration conf, Collection<TrainingListener> trainingListeners, int layerIndex, INDArray layerParamsView, boolean initializeParams, DataType networkDataType)
instantiate in class Layerpublic ParamInitializer initializer()
initializer in class Layerpublic InputType getOutputType(int layerIndex, InputType inputType)
LayergetOutputType in class FeedForwardLayerlayerIndex - Index of the layerinputType - Type of input for the layerpublic void setNIn(InputType inputType, boolean override)
LayersetNIn in class FeedForwardLayerinputType - Input type for this layeroverride - If false: only set the nIn value if it's not already set. If true: set it
regardless of whether it's already set or not.public InputPreProcessor getPreProcessorForInputType(InputType inputType)
LayerInputPreProcessor for this layer, such as a CnnToFeedForwardPreProcessorgetPreProcessorForInputType in class FeedForwardLayerinputType - InputType to this layerpublic List<Regularization> getRegularizationByParam(String paramName)
LayergetRegularizationByParam in interface TrainingConfiggetRegularizationByParam in class BaseLayerparamName - Parameter name ("W", "b" etc)public boolean isPretrainParam(String paramName)
LayerisPretrainParam in interface TrainingConfigisPretrainParam in class FeedForwardLayerparamName - Parameter name/keypublic LayerMemoryReport getMemoryReport(InputType inputType)
LayergetMemoryReport in class LayerinputType - Input type to the layer. Memory consumption is often a function of the input
typeCopyright © 2020. All rights reserved.