public class ElementWiseMultiplicationLayer extends FeedForwardLayer
out = activationFn(input .* w + b) where:created by jingshu
| Modifier and Type | Class and Description |
|---|---|
static class |
ElementWiseMultiplicationLayer.Builder |
nIn, nOut, timeDistributedFormatactivationFn, biasInit, biasUpdater, gainInit, gradientNormalization, gradientNormalizationThreshold, iUpdater, regularization, regularizationBias, weightInitFn, weightNoiseconstraints, iDropout, layerName| Modifier | Constructor and Description |
|---|---|
protected |
ElementWiseMultiplicationLayer() |
protected |
ElementWiseMultiplicationLayer(ElementWiseMultiplicationLayer.Builder builder) |
| Modifier and Type | Method and Description |
|---|---|
ElementWiseMultiplicationLayer |
clone() |
LayerMemoryReport |
getMemoryReport(InputType inputType)
This is a report of the estimated memory consumption for the given layer
|
ParamInitializer |
initializer() |
Layer |
instantiate(NeuralNetConfiguration conf,
Collection<TrainingListener> trainingListeners,
int layerIndex,
INDArray layerParamsView,
boolean initializeParams,
DataType networkDataType) |
getOutputType, getPreProcessorForInputType, isPretrainParam, setNIngetGradientNormalization, getRegularizationByParam, getUpdaterByParam, resetLayerDefaultConfiginitializeConstraints, setDataTypeequals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitgetGradientNormalizationThreshold, getLayerNameprotected ElementWiseMultiplicationLayer()
protected ElementWiseMultiplicationLayer(ElementWiseMultiplicationLayer.Builder builder)
public ElementWiseMultiplicationLayer clone()
public Layer instantiate(NeuralNetConfiguration conf, Collection<TrainingListener> trainingListeners, int layerIndex, INDArray layerParamsView, boolean initializeParams, DataType networkDataType)
instantiate in class Layerpublic ParamInitializer initializer()
initializer in class Layerpublic LayerMemoryReport getMemoryReport(InputType inputType)
getMemoryReport in class LayerinputType - Input type to the layer. Memory consumption is often a function of the input typeCopyright © 2020. All rights reserved.