public class CompositeReconstructionDistribution extends Object implements ReconstructionDistribution
GaussianReconstructionDistribution, the next 10 values as binary/Bernoulli (with
a BernoulliReconstructionDistribution)| Modifier and Type | Class and Description |
|---|---|
static class |
CompositeReconstructionDistribution.Builder |
| Constructor and Description |
|---|
CompositeReconstructionDistribution(int[] distributionSizes,
ReconstructionDistribution[] reconstructionDistributions,
int totalSize) |
| Modifier and Type | Method and Description |
|---|---|
INDArray |
computeLossFunctionScoreArray(INDArray data,
INDArray reconstruction) |
int |
distributionInputSize(int dataSize)
Get the number of distribution parameters for the given input data size.
|
INDArray |
exampleNegLogProbability(INDArray x,
INDArray preOutDistributionParams)
Calculate the negative log probability for each example individually
|
INDArray |
generateAtMean(INDArray preOutDistributionParams)
Generate a sample from P(x|z), where x = E[P(x|z)]
i.e., return the mean value for the distribution
|
INDArray |
generateRandom(INDArray preOutDistributionParams)
Randomly sample from P(x|z) using the specified distribution parameters
|
INDArray |
gradient(INDArray x,
INDArray preOutDistributionParams)
Calculate the gradient of the negative log probability with respect to the preOutDistributionParams
|
boolean |
hasLossFunction()
Does this reconstruction distribution has a standard neural network loss function (such as mean squared error,
which is deterministic) or is it a standard VAE with a probabilistic reconstruction distribution?
|
double |
negLogProbability(INDArray x,
INDArray preOutDistributionParams,
boolean average)
Calculate the negative log probability (summed or averaged over each example in the minibatch)
|
public CompositeReconstructionDistribution(int[] distributionSizes,
ReconstructionDistribution[] reconstructionDistributions,
int totalSize)
public INDArray computeLossFunctionScoreArray(INDArray data, INDArray reconstruction)
public boolean hasLossFunction()
ReconstructionDistributionhasLossFunction in interface ReconstructionDistributionpublic int distributionInputSize(int dataSize)
ReconstructionDistributiondistributionInputSize in interface ReconstructionDistributiondataSize - Size of the data. i.e., nIn valuepublic double negLogProbability(INDArray x, INDArray preOutDistributionParams, boolean average)
ReconstructionDistributionnegLogProbability in interface ReconstructionDistributionx - Data to be modelled (reconstructions)preOutDistributionParams - Distribution parameters used by this reconstruction distribution (for example,
mean and log variance values for Gaussian)average - Whether the log probability should be averaged over the minibatch, or simply summed.public INDArray exampleNegLogProbability(INDArray x, INDArray preOutDistributionParams)
ReconstructionDistributionexampleNegLogProbability in interface ReconstructionDistributionx - Data to be modelled (reconstructions)preOutDistributionParams - Distribution parameters used by this reconstruction distribution (for example,
mean and log variance values for Gaussian) - before applying activation functionpublic INDArray gradient(INDArray x, INDArray preOutDistributionParams)
ReconstructionDistributiongradient in interface ReconstructionDistributionx - DatapreOutDistributionParams - Distribution parameters used by this reconstruction distribution (for example,
mean and log variance values for Gaussian) - before applying activation functionpublic INDArray generateRandom(INDArray preOutDistributionParams)
ReconstructionDistributiongenerateRandom in interface ReconstructionDistributionpreOutDistributionParams - Distribution parameters used by this reconstruction distribution (for example,
mean and log variance values for Gaussian) - before applying activation functionpublic INDArray generateAtMean(INDArray preOutDistributionParams)
ReconstructionDistributiongenerateAtMean in interface ReconstructionDistributionpreOutDistributionParams - Distribution parameters used by this reconstruction distribution (for example,
mean and log variance values for Gaussian) - before applying activation functionCopyright © 2020. All rights reserved.