trait Bitraverse[F[_, _]] extends Bifunctor[F] with Bifoldable[F]
A type giving rise to two unrelated scalaz.Traverses.
- Self Type
- Bitraverse[F]
- Source
- Bitraverse.scala
- Alphabetic
- By Inheritance
- Bitraverse
- Bifoldable
- Bifunctor
- BifunctorParent
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Type Members
-
trait
BifoldableLaw extends AnyRef
- Definition Classes
- Bifoldable
- class Bitraversal[G[_]] extends AnyRef
Abstract Value Members
-
abstract
def
bitraverseImpl[G[_], A, B, C, D](fab: F[A, B])(f: (A) ⇒ G[C], g: (B) ⇒ G[D])(implicit arg0: Applicative[G]): G[F[C, D]]
Collect
G
s while applyingf
andg
in some order.
Concrete Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
final
def
bifoldL[A, B, C](fa: F[A, B], z: C)(f: (C) ⇒ (A) ⇒ C)(g: (C) ⇒ (B) ⇒ C): C
Curried version of
bifoldLeft
Curried version of
bifoldLeft
- Definition Classes
- Bifoldable
- def bifoldLShape[A, B, C](fa: F[A, B], z: C)(f: (C, A) ⇒ C)(g: (C, B) ⇒ C): (C, F[Unit, Unit])
-
def
bifoldLeft[A, B, C](fa: F[A, B], z: C)(f: (C, A) ⇒ C)(g: (C, B) ⇒ C): C
bifoldRight
, but defined to run in the opposite direction.bifoldRight
, but defined to run in the opposite direction.- Definition Classes
- Bitraverse → Bifoldable
-
def
bifoldMap[A, B, M](fa: F[A, B])(f: (A) ⇒ M)(g: (B) ⇒ M)(implicit F: Monoid[M]): M
Accumulate
A
s andB
sAccumulate
A
s andB
s- Definition Classes
- Bitraverse → Bifoldable
-
def
bifoldMap1[A, B, M](fa: F[A, B])(f: (A) ⇒ M)(g: (B) ⇒ M)(implicit F: Semigroup[M]): Option[M]
- Definition Classes
- Bifoldable
-
final
def
bifoldR[A, B, C](fa: F[A, B], z: ⇒ C)(f: (A) ⇒ (⇒ C) ⇒ C)(g: (B) ⇒ (⇒ C) ⇒ C): C
Curried version of
bifoldRight
Curried version of
bifoldRight
- Definition Classes
- Bifoldable
-
def
bifoldRight[A, B, C](fa: F[A, B], z: ⇒ C)(f: (A, ⇒ C) ⇒ C)(g: (B, ⇒ C) ⇒ C): C
Accumulate to
C
starting at the "right".Accumulate to
C
starting at the "right".f
andg
may be interleaved.- Definition Classes
- Bitraverse → Bifoldable
-
def
bifoldableLaw: BifoldableLaw
- Definition Classes
- Bifoldable
-
val
bifoldableSyntax: BifoldableSyntax[F]
- Definition Classes
- Bifoldable
-
val
bifunctorSyntax: BifunctorSyntax[F]
- Definition Classes
- Bifunctor
-
def
bimap[A, B, C, D](fab: F[A, B])(f: (A) ⇒ C, g: (B) ⇒ D): F[C, D]
map
over both type parameters.map
over both type parameters.- Definition Classes
- Bitraverse → Bifunctor
- def bisequence[G[_], A, B](x: F[G[A], G[B]])(implicit arg0: Applicative[G]): G[F[A, B]]
- def bitraversal[G[_]](implicit arg0: Applicative[G]): Bitraversal[G]
- def bitraversalS[S]: Bitraversal[[β$2$]IndexedStateT[[X]X, S, S, β$2$]]
- def bitraverse[G[_], A, B, C, D](fa: F[A, B])(f: (A) ⇒ G[C])(g: (B) ⇒ G[D])(implicit arg0: Applicative[G]): G[F[C, D]]
-
def
bitraverseF[G[_], A, B, C, D](f: (A) ⇒ G[C], g: (B) ⇒ G[D])(implicit arg0: Applicative[G]): (F[A, B]) ⇒ G[F[C, D]]
Flipped
bitraverse
. -
def
bitraverseKTrampoline[S, G[_], A, B, C, D](fa: F[A, B])(f: (A) ⇒ Kleisli[G, S, C])(g: (B) ⇒ Kleisli[G, S, D])(implicit arg0: Applicative[G]): Kleisli[G, S, F[C, D]]
Bitraverse
fa
with aKleisli[G, S, C]
andKleisli[G, S, D]
, internally using aTrampoline
to avoid stack overflow. - def bitraverseS[S, A, B, C, D](fa: F[A, B])(f: (A) ⇒ State[S, C])(g: (B) ⇒ State[S, D]): State[S, F[C, D]]
- val bitraverseSyntax: BitraverseSyntax[F]
-
def
clone(): AnyRef
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @native() @throws( ... )
-
def
compose[G[_, _]](implicit G0: Bitraverse[G]): Bitraverse[[α, β]F[G[α, β], G[α, β]]]
The composition of Bitraverses
F
andG
,[x,y]F[G[x,y],G[x,y]]
, is a Bitraverse -
def
compose[G[_, _]](implicit G0: Bifoldable[G]): Bifoldable[[α, β]F[G[α, β], G[α, β]]]
The composition of Bifoldables
F
andG
,[x,y]F[G[x,y],G[x,y]]
, is a BifoldableThe composition of Bifoldables
F
andG
,[x,y]F[G[x,y],G[x,y]]
, is a Bifoldable- Definition Classes
- Bifoldable
-
def
compose[G[_, _]](implicit G0: Bifunctor[G]): Bifunctor[[α, β]F[G[α, β], G[α, β]]]
The composition of Bifunctors
F
andG
,[x,y]F[G[x,y],G[x,y]]
, is a BifunctorThe composition of Bifunctors
F
andG
,[x,y]F[G[x,y],G[x,y]]
, is a Bifunctor- Definition Classes
- Bifunctor
-
def
embed[G[_], H[_]](implicit G0: Traverse[G], H0: Traverse[H]): Bitraverse[[α, β]F[G[α], H[β]]]
Embed a Traverse on each side of this Bitraverse .
-
def
embed[G[_], H[_]](implicit G0: Foldable[G], H0: Foldable[H]): Bifoldable[[α, β]F[G[α], H[β]]]
Embed one Foldable at each side of this Bifoldable
Embed one Foldable at each side of this Bifoldable
- Definition Classes
- Bifoldable
-
def
embed[G[_], H[_]](implicit G0: Functor[G], H0: Functor[H]): Bifunctor[[α, β]F[G[α], H[β]]]
Embed two Functors , one on each side
Embed two Functors , one on each side
- Definition Classes
- Bifunctor
-
def
embedLeft[G[_]](implicit G0: Traverse[G]): Bitraverse[[α, β]F[G[α], β]]
Embed a Traverse on the left side of this Bitraverse .
-
def
embedLeft[G[_]](implicit G0: Foldable[G]): Bifoldable[[α, β]F[G[α], β]]
Embed one Foldable to the left of this Bifoldable .
Embed one Foldable to the left of this Bifoldable .
- Definition Classes
- Bifoldable
-
def
embedLeft[G[_]](implicit G0: Functor[G]): Bifunctor[[α, β]F[G[α], β]]
Embed one Functor to the left
Embed one Functor to the left
- Definition Classes
- Bifunctor
-
def
embedRight[H[_]](implicit H0: Traverse[H]): Bitraverse[[α, β]F[α, H[β]]]
Embed a Traverse on the right side of this Bitraverse .
-
def
embedRight[H[_]](implicit H0: Foldable[H]): Bifoldable[[α, β]F[α, H[β]]]
Embed one Foldable to the right of this Bifoldable .
Embed one Foldable to the right of this Bifoldable .
- Definition Classes
- Bifoldable
-
def
embedRight[H[_]](implicit H0: Functor[H]): Bifunctor[[α, β]F[α, H[β]]]
Embed one Functor to the right
Embed one Functor to the right
- Definition Classes
- Bifunctor
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
finalize(): Unit
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
def
leftFoldable[X]: Foldable[[α$0$]F[α$0$, X]]
Extract the Foldable on the first parameter.
Extract the Foldable on the first parameter.
- Definition Classes
- Bifoldable
-
def
leftFunctor[X]: Functor[[α$0$]F[α$0$, X]]
Extract the Functor on the first param.
Extract the Functor on the first param.
- Definition Classes
- Bifunctor
-
def
leftMap[A, B, C](fab: F[A, B])(f: (A) ⇒ C): F[C, B]
- Definition Classes
- Bifunctor
-
def
leftTraverse[X]: Traverse[[α$0$]F[α$0$, X]]
Extract the Traverse on the first param.
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
def
product[G[_, _]](implicit G0: Bitraverse[G]): Bitraverse[[α, β](F[α, β], G[α, β])]
The product of Bitraverses
F
andG
,[x,y](F[x,y], G[x,y])
, is a Bitraverse -
def
product[G[_, _]](implicit G0: Bifoldable[G]): Bifoldable[[α, β](F[α, β], G[α, β])]
The product of Bifoldables
F
andG
,[x,y](F[x,y], G[x,y])
, is a BifoldableThe product of Bifoldables
F
andG
,[x,y](F[x,y], G[x,y])
, is a Bifoldable- Definition Classes
- Bifoldable
-
def
product[G[_, _]](implicit G0: Bifunctor[G]): Bifunctor[[α, β](F[α, β], G[α, β])]
The product of Bifunctors
F
andG
,[x,y](F[x,y], G[x,y])
, is a BifunctorThe product of Bifunctors
F
andG
,[x,y](F[x,y], G[x,y])
, is a Bifunctor- Definition Classes
- Bifunctor
-
def
rightFoldable[X]: Foldable[[β$1$]F[X, β$1$]]
Extract the Foldable on the second parameter.
Extract the Foldable on the second parameter.
- Definition Classes
- Bifoldable
-
def
rightFunctor[X]: Functor[[β$1$]F[X, β$1$]]
Extract the Functor on the second param.
Extract the Functor on the second param.
- Definition Classes
- Bifunctor
-
def
rightMap[A, B, D](fab: F[A, B])(g: (B) ⇒ D): F[A, D]
- Definition Classes
- Bifunctor
-
def
rightTraverse[X]: Traverse[[β$1$]F[X, β$1$]]
Extract the Traverse on the second param.
- def runBitraverseS[S, A, B, C, D](fa: F[A, B], s: S)(f: (A) ⇒ State[S, C])(g: (B) ⇒ State[S, D]): (S, F[C, D])
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
def
toString(): String
- Definition Classes
- AnyRef → Any
-
def
traverseSTrampoline[S, G[_], A, B, C, D](fa: F[A, B])(f: (A) ⇒ State[S, G[C]])(g: (B) ⇒ State[S, G[D]])(implicit arg0: Applicative[G]): State[S, G[F[C, D]]]
Bitraverse
fa
with aState[S, G[C]]
andState[S, G[D]]
, internally using aTrampoline
to avoid stack overflow. -
def
uFoldable: Foldable[[α]F[α, α]]
Unify the foldable over both params.
Unify the foldable over both params.
- Definition Classes
- Bifoldable
-
def
uFunctor: Functor[[α]F[α, α]]
Unify the functor over both params.
Unify the functor over both params.
- Definition Classes
- Bifunctor
-
def
uTraverse: Traverse[[α]F[α, α]]
Unify the traverse over both params.
-
def
umap[A, B](faa: F[A, A])(f: (A) ⇒ B): F[B, B]
- Definition Classes
- Bifunctor
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @throws( ... )
-
def
widen[A, B, C >: A, D >: B](fab: F[A, B]): F[C, D]
Bifunctors are covariant by nature
Bifunctors are covariant by nature
- Definition Classes
- BifunctorParent