# Packages

t

scalaz

Ordering
1. Alphabetic
2. By Inheritance
Inherited
3. IsomorphismBind
4. IsomorphismApplicative
5. IsomorphismApply
6. IsomorphismFunctor
7. IsomorphismEmpty
8. IsomorphismPlus
11. ApplicativePlus
12. PlusEmpty
13. Plus
15. Bind
16. BindParent
17. Applicative
18. ApplicativeParent
19. Apply
20. ApplyParent
21. Functor
22. InvariantFunctor
23. AnyRef
24. Any
1. Hide All
2. Show All
Visibility
1. Public
2. All

### Type Members

1. trait ApplicativeLaw extends ApplyLaw
Definition Classes
Applicative
2. trait ApplyLaw extends FunctorLaw
Definition Classes
Apply
3. trait BindLaw extends ApplyLaw
Definition Classes
Bind
4. trait FunctorLaw extends InvariantFunctorLaw
Definition Classes
Functor
5. trait InvariantFunctorLaw extends AnyRef
Definition Classes
InvariantFunctor
6. trait MonadLaw extends ApplicativeLaw with BindLaw
Definition Classes
Definition Classes
Definition Classes
9. trait PlusLaw extends AnyRef
Definition Classes
Plus
10. trait EmptyLaw extends PlusLaw
Definition Classes
PlusEmpty

### Abstract Value Members

1. implicit abstract def G: MonadPlus[G]
2. abstract def iso: Isomorphism.<~>[F, G]
Definition Classes
IsomorphismFunctor

### Concrete Value Members

1. final def !=(arg0: Any)
Definition Classes
AnyRef → Any
2. final def ##(): Int
Definition Classes
AnyRef → Any
3. final def ==(arg0: Any)
Definition Classes
AnyRef → Any
4. def ap[A, B](fa: ⇒ F[A])(f: ⇒ F[(A) ⇒ B]): F[B]

Sequence `f`, then `fa`, combining their results by function application.

Sequence `f`, then `fa`, combining their results by function application.

NB: with respect to `apply2` and all other combinators, as well as scalaz.Bind, the `f` action appears to the *left*. So `f` should be the "first" `F`-action to perform. This is in accordance with all other implementations of this typeclass in common use, which are "function first".

Definition Classes
IsomorphismApplicativeIsomorphismApplyApply
5. def ap2[A, B, C](fa: ⇒ F[A], fb: ⇒ F[B])(f: F[(A, B) ⇒ C]): F[C]
Definition Classes
Apply
6. def ap3[A, B, C, D](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C])(f: F[(A, B, C) ⇒ D]): F[D]
Definition Classes
Apply
7. def ap4[A, B, C, D, E](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D])(f: F[(A, B, C, D) ⇒ E]): F[E]
Definition Classes
Apply
8. def ap5[A, B, C, D, E, R](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D], fe: ⇒ F[E])(f: F[(A, B, C, D, E) ⇒ R]): F[R]
Definition Classes
Apply
9. def ap6[A, B, C, D, E, FF, R](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D], fe: ⇒ F[E], ff: ⇒ F[FF])(f: F[(A, B, C, D, E, FF) ⇒ R]): F[R]
Definition Classes
Apply
10. def ap7[A, B, C, D, E, FF, G, R](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D], fe: ⇒ F[E], ff: ⇒ F[FF], fg: ⇒ F[G])(f: F[(A, B, C, D, E, FF, G) ⇒ R]): F[R]
Definition Classes
Apply
11. def ap8[A, B, C, D, E, FF, G, H, R](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D], fe: ⇒ F[E], ff: ⇒ F[FF], fg: ⇒ F[G], fh: ⇒ F[H])(f: F[(A, B, C, D, E, FF, G, H) ⇒ R]): F[R]
Definition Classes
Apply
12. def apF[A, B](f: ⇒ F[(A) ⇒ B]): (F[A]) ⇒ F[B]

Flipped variant of `ap`.

Flipped variant of `ap`.

Definition Classes
Apply
13. def applicativeLaw
Definition Classes
Applicative
14. val applicativePlusSyntax
Definition Classes
ApplicativePlus
15. val applicativeSyntax
Definition Classes
Applicative
16. def apply[A, B](fa: F[A])(f: (A) ⇒ B): F[B]

Alias for `map`.

Alias for `map`.

Definition Classes
Functor
17. def apply10[A, B, C, D, E, FF, G, H, I, J, R](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D], fe: ⇒ F[E], ff: ⇒ F[FF], fg: ⇒ F[G], fh: ⇒ F[H], fi: ⇒ F[I], fj: ⇒ F[J])(f: (A, B, C, D, E, FF, G, H, I, J) ⇒ R): F[R]
Definition Classes
Apply
18. def apply11[A, B, C, D, E, FF, G, H, I, J, K, R](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D], fe: ⇒ F[E], ff: ⇒ F[FF], fg: ⇒ F[G], fh: ⇒ F[H], fi: ⇒ F[I], fj: ⇒ F[J], fk: ⇒ F[K])(f: (A, B, C, D, E, FF, G, H, I, J, K) ⇒ R): F[R]
Definition Classes
Apply
19. def apply12[A, B, C, D, E, FF, G, H, I, J, K, L, R](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D], fe: ⇒ F[E], ff: ⇒ F[FF], fg: ⇒ F[G], fh: ⇒ F[H], fi: ⇒ F[I], fj: ⇒ F[J], fk: ⇒ F[K], fl: ⇒ F[L])(f: (A, B, C, D, E, FF, G, H, I, J, K, L) ⇒ R): F[R]
Definition Classes
Apply
20. def apply2[A, B, C](fa: ⇒ F[A], fb: ⇒ F[B])(f: (A, B) ⇒ C): F[C]
Definition Classes
IsomorphismApplicativeApplicativeApply
21. def apply3[A, B, C, D](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C])(f: (A, B, C) ⇒ D): F[D]
Definition Classes
Apply
22. def apply4[A, B, C, D, E](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D])(f: (A, B, C, D) ⇒ E): F[E]
Definition Classes
Apply
23. def apply5[A, B, C, D, E, R](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D], fe: ⇒ F[E])(f: (A, B, C, D, E) ⇒ R): F[R]
Definition Classes
Apply
24. def apply6[A, B, C, D, E, FF, R](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D], fe: ⇒ F[E], ff: ⇒ F[FF])(f: (A, B, C, D, E, FF) ⇒ R): F[R]
Definition Classes
Apply
25. def apply7[A, B, C, D, E, FF, G, R](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D], fe: ⇒ F[E], ff: ⇒ F[FF], fg: ⇒ F[G])(f: (A, B, C, D, E, FF, G) ⇒ R): F[R]
Definition Classes
Apply
26. def apply8[A, B, C, D, E, FF, G, H, R](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D], fe: ⇒ F[E], ff: ⇒ F[FF], fg: ⇒ F[G], fh: ⇒ F[H])(f: (A, B, C, D, E, FF, G, H) ⇒ R): F[R]
Definition Classes
Apply
27. def apply9[A, B, C, D, E, FF, G, H, I, R](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D], fe: ⇒ F[E], ff: ⇒ F[FF], fg: ⇒ F[G], fh: ⇒ F[H], fi: ⇒ F[I])(f: (A, B, C, D, E, FF, G, H, I) ⇒ R): F[R]
Definition Classes
Apply
28. def applyApplicative: Applicative[[α]\/[F[α], α]]

Add a unit to any Apply to form an Applicative.

Add a unit to any Apply to form an Applicative.

Definition Classes
Apply
29. def applyLaw
Definition Classes
Apply
30. val applySyntax: ApplySyntax[F]
Definition Classes
Apply
31. final def asInstanceOf[T0]: T0
Definition Classes
Any
32. def bicompose[G[_, _]](implicit arg0: Bifunctor[G]): Bifunctor[[α, β]F[G[α, β]]]

The composition of Functor `F` and Bifunctor `G`, `[x, y]F[G[x, y]]`, is a Bifunctor

The composition of Functor `F` and Bifunctor `G`, `[x, y]F[G[x, y]]`, is a Bifunctor

Definition Classes
Functor
33. def bind[A, B](fa: F[A])(f: (A) ⇒ F[B]): F[B]

Equivalent to `join(map(fa)(f))`.

Equivalent to `join(map(fa)(f))`.

Definition Classes
IsomorphismBindBind
34. def bindLaw
Definition Classes
Bind
35. val bindSyntax: BindSyntax[F]
Definition Classes
Bind
36. def clone()
Attributes
protected[java.lang]
Definition Classes
AnyRef
Annotations
@native() @throws( ... )
37. def compose[G[_]](implicit G0: Applicative[G]): ApplicativePlus[[α]F[G[α]]]

The composition of ApplicativePlus `F` and Applicative `G`, `[x]F[G[x]]`, is a ApplicativePlus

The composition of ApplicativePlus `F` and Applicative `G`, `[x]F[G[x]]`, is a ApplicativePlus

Definition Classes
ApplicativePlusApplicative
38. def compose[G[_]]: PlusEmpty[[α]F[G[α]]]

The composition of PlusEmpty `F` and `G`, `[x]F[G[x]]`, is a PlusEmpty

The composition of PlusEmpty `F` and `G`, `[x]F[G[x]]`, is a PlusEmpty

Definition Classes
PlusEmptyPlus
39. def compose[G[_]](implicit G0: Apply[G]): Apply[[α]F[G[α]]]

The composition of Applys `F` and `G`, `[x]F[G[x]]`, is a Apply

The composition of Applys `F` and `G`, `[x]F[G[x]]`, is a Apply

Definition Classes
Apply
40. def compose[G[_]](implicit G0: Functor[G]): Functor[[α]F[G[α]]]

The composition of Functors `F` and `G`, `[x]F[G[x]]`, is a Functor

The composition of Functors `F` and `G`, `[x]F[G[x]]`, is a Functor

Definition Classes
Functor
41. def counzip[A, B](a: \/[F[A], F[B]]): F[\/[A, B]]
Definition Classes
Functor
42. def discardLeft[A, B](fa: ⇒ F[A], fb: ⇒ F[B]): F[B]

Combine `fa` and `fb` according to `Apply[F]` with a function that discards the `A`(s)

Combine `fa` and `fb` according to `Apply[F]` with a function that discards the `A`(s)

Definition Classes
ApplyParent
43. def discardRight[A, B](fa: ⇒ F[A], fb: ⇒ F[B]): F[A]

Combine `fa` and `fb` according to `Apply[F]` with a function that discards the `B`(s)

Combine `fa` and `fb` according to `Apply[F]` with a function that discards the `B`(s)

Definition Classes
ApplyParent
44. def empty[A]: F[A]
Definition Classes
IsomorphismEmptyPlusEmpty
45. final def eq(arg0: AnyRef)
Definition Classes
AnyRef
46. def equals(arg0: Any)
Definition Classes
AnyRef → Any
47. def filter[A](fa: F[A])(f: (A) ⇒ Boolean): F[A]

Remove `f`-failing `A`s in `fa`, by which we mean: in the expression `filter(filter(fa)(f))(g)`, `g` will never be invoked for any `a` where `f(a)` returns false.

Remove `f`-failing `A`s in `fa`, by which we mean: in the expression `filter(filter(fa)(f))(g)`, `g` will never be invoked for any `a` where `f(a)` returns false.

Definition Classes
48. def filterM[A](l: List[A])(f: (A) ⇒ F[Boolean]): F[List[A]]

Filter `l` according to an applicative predicate.

Filter `l` according to an applicative predicate.

Definition Classes
Applicative
49. def finalize(): Unit
Attributes
protected[java.lang]
Definition Classes
AnyRef
Annotations
@throws( classOf[java.lang.Throwable] )
50. def flip: Applicative[F]

An `Applicative` for `F` in which effects happen in the opposite order.

An `Applicative` for `F` in which effects happen in the opposite order.

Definition Classes
ApplicativeApplyParent
51. def forever[A, B](fa: F[A]): F[B]

Definition Classes
BindApplyParent
52. def fpair[A](fa: F[A]): F[(A, A)]

Twin all `A`s in `fa`.

Twin all `A`s in `fa`.

Definition Classes
Functor
53. def fproduct[A, B](fa: F[A])(f: (A) ⇒ B): F[(A, B)]

Pair all `A`s in `fa` with the result of function application.

Pair all `A`s in `fa` with the result of function application.

Definition Classes
Functor
54. def functorLaw
Definition Classes
Functor
55. val functorSyntax: FunctorSyntax[F]
Definition Classes
Functor
56. final def getClass(): Class[_]
Definition Classes
AnyRef → Any
Annotations
@native()
57. def hashCode(): Int
Definition Classes
AnyRef → Any
Annotations
@native()
58. def icompose[G[_]](implicit G0: Contravariant[G]): Contravariant[[α]F[G[α]]]

The composition of Functor F and Contravariant G, `[x]F[G[x]]`, is contravariant.

The composition of Functor F and Contravariant G, `[x]F[G[x]]`, is contravariant.

Definition Classes
Functor
59. def ifM[B](value: F[Boolean], ifTrue: ⇒ F[B], ifFalse: ⇒ F[B]): F[B]

`if` lifted into a binding.

`if` lifted into a binding. Unlike ```lift3((t,c,a)=>if(t)c else a)```, this will only include context from the chosen of `ifTrue` and `ifFalse`, not the other.

Definition Classes
Bind
60. def invariantFunctorLaw
Definition Classes
InvariantFunctor
61. val invariantFunctorSyntax
Definition Classes
InvariantFunctor
62. final def isInstanceOf[T0]
Definition Classes
Any
63. def iterateUntil[A](f: F[A])(p: (A) ⇒ Boolean): F[A]

Execute an action repeatedly until its result satisfies the given predicate and return that result, discarding all others.

Execute an action repeatedly until its result satisfies the given predicate and return that result, discarding all others.

Definition Classes
64. def iterateWhile[A](f: F[A])(p: (A) ⇒ Boolean): F[A]

Execute an action repeatedly until its result fails to satisfy the given predicate and return that result, discarding all others.

Execute an action repeatedly until its result fails to satisfy the given predicate and return that result, discarding all others.

Definition Classes
65. def join[A](ffa: F[F[A]]): F[A]

Sequence the inner `F` of `FFA` after the outer `F`, forming a single `F[A]`.

Sequence the inner `F` of `FFA` after the outer `F`, forming a single `F[A]`.

Definition Classes
Bind
66. def lefts[G[_, _], A, B](value: F[G[A, B]])(implicit G: Bifoldable[G]): F[A]

Generalized version of Haskell's `lefts`

Generalized version of Haskell's `lefts`

Definition Classes
67. def lift[A, B](f: (A) ⇒ B): (F[A]) ⇒ F[B]

Lift `f` into `F`.

Lift `f` into `F`.

Definition Classes
Functor
68. def lift10[A, B, C, D, E, FF, G, H, I, J, R](f: (A, B, C, D, E, FF, G, H, I, J) ⇒ R): (F[A], F[B], F[C], F[D], F[E], F[FF], F[G], F[H], F[I], F[J]) ⇒ F[R]
Definition Classes
Apply
69. def lift11[A, B, C, D, E, FF, G, H, I, J, K, R](f: (A, B, C, D, E, FF, G, H, I, J, K) ⇒ R): (F[A], F[B], F[C], F[D], F[E], F[FF], F[G], F[H], F[I], F[J], F[K]) ⇒ F[R]
Definition Classes
Apply
70. def lift12[A, B, C, D, E, FF, G, H, I, J, K, L, R](f: (A, B, C, D, E, FF, G, H, I, J, K, L) ⇒ R): (F[A], F[B], F[C], F[D], F[E], F[FF], F[G], F[H], F[I], F[J], F[K], F[L]) ⇒ F[R]
Definition Classes
Apply
71. def lift2[A, B, C](f: (A, B) ⇒ C): (F[A], F[B]) ⇒ F[C]
Definition Classes
Apply
72. def lift3[A, B, C, D](f: (A, B, C) ⇒ D): (F[A], F[B], F[C]) ⇒ F[D]
Definition Classes
Apply
73. def lift4[A, B, C, D, E](f: (A, B, C, D) ⇒ E): (F[A], F[B], F[C], F[D]) ⇒ F[E]
Definition Classes
Apply
74. def lift5[A, B, C, D, E, R](f: (A, B, C, D, E) ⇒ R): (F[A], F[B], F[C], F[D], F[E]) ⇒ F[R]
Definition Classes
Apply
75. def lift6[A, B, C, D, E, FF, R](f: (A, B, C, D, E, FF) ⇒ R): (F[A], F[B], F[C], F[D], F[E], F[FF]) ⇒ F[R]
Definition Classes
Apply
76. def lift7[A, B, C, D, E, FF, G, R](f: (A, B, C, D, E, FF, G) ⇒ R): (F[A], F[B], F[C], F[D], F[E], F[FF], F[G]) ⇒ F[R]
Definition Classes
Apply
77. def lift8[A, B, C, D, E, FF, G, H, R](f: (A, B, C, D, E, FF, G, H) ⇒ R): (F[A], F[B], F[C], F[D], F[E], F[FF], F[G], F[H]) ⇒ F[R]
Definition Classes
Apply
78. def lift9[A, B, C, D, E, FF, G, H, I, R](f: (A, B, C, D, E, FF, G, H, I) ⇒ R): (F[A], F[B], F[C], F[D], F[E], F[FF], F[G], F[H], F[I]) ⇒ F[R]
Definition Classes
Apply
79. def many[A](a: F[A]): F[List[A]]

A list of results acquired by repeating `a`.

A list of results acquired by repeating `a`. Never `empty`; initial failure is an empty list instead.

Definition Classes
ApplicativePlus
80. def map[A, B](fa: F[A])(f: (A) ⇒ B): F[B]

Lift `f` into `F` and apply to `F[A]`.

Lift `f` into `F` and apply to `F[A]`.

Definition Classes
IsomorphismFunctorFunctor
81. def mapply[A, B](a: A)(f: F[(A) ⇒ B]): F[B]

Lift `apply(a)`, and apply the result to `f`.

Lift `apply(a)`, and apply the result to `f`.

Definition Classes
Functor
Definition Classes
Definition Classes
Definition Classes
Definition Classes
86. def monoid[A]: Monoid[F[A]]
Definition Classes
PlusEmpty
87. def mproduct[A, B](fa: F[A])(f: (A) ⇒ F[B]): F[(A, B)]

Pair `A` with the result of function application.

Pair `A` with the result of function application.

Definition Classes
Bind
88. final def ne(arg0: AnyRef)
Definition Classes
AnyRef
89. final def notify(): Unit
Definition Classes
AnyRef
Annotations
@native()
90. final def notifyAll(): Unit
Definition Classes
AnyRef
Annotations
@native()
91. def par: Par[F]

A lawful implementation of this that is isomorphic up to the methods defined on Applicative allowing for optimised parallel implementations that would otherwise violate laws of more specific typeclasses (e.g.

A lawful implementation of this that is isomorphic up to the methods defined on Applicative allowing for optimised parallel implementations that would otherwise violate laws of more specific typeclasses (e.g. Monad).

Definition Classes
ApplicativeParent
92. def plus[A](a: F[A], b: ⇒ F[A]): F[A]
Definition Classes
IsomorphismPlusPlus
93. def plusEmptyLaw
Definition Classes
PlusEmpty
94. val plusEmptySyntax: PlusEmptySyntax[F]
Definition Classes
PlusEmpty
95. def plusLaw
Definition Classes
Plus
96. val plusSyntax: PlusSyntax[F]
Definition Classes
Plus
97. def point[A](a: ⇒ A): F[A]
Definition Classes
IsomorphismApplicativeApplicative

The product of MonadPlus `F` and `G`, `[x](F[x], G[x]])`, is a MonadPlus

The product of MonadPlus `F` and `G`, `[x](F[x], G[x]])`, is a MonadPlus

Definition Classes
99. def product[G[_]](implicit G0: ApplicativePlus[G]): ApplicativePlus[[α](F[α], G[α])]

The product of ApplicativePlus `F` and `G`, `[x](F[x], G[x]])`, is a ApplicativePlus

The product of ApplicativePlus `F` and `G`, `[x](F[x], G[x]])`, is a ApplicativePlus

Definition Classes
ApplicativePlus
100. def product[G[_]](implicit G0: PlusEmpty[G]): PlusEmpty[[α](F[α], G[α])]

The product of PlusEmpty `F` and `G`, `[x](F[x], G[x]])`, is a PlusEmpty

The product of PlusEmpty `F` and `G`, `[x](F[x], G[x]])`, is a PlusEmpty

Definition Classes
PlusEmpty
101. def product[G[_]](implicit G0: Plus[G]): Plus[[α](F[α], G[α])]

The product of Plus `F` and `G`, `[x](F[x], G[x]])`, is a Plus

The product of Plus `F` and `G`, `[x](F[x], G[x]])`, is a Plus

Definition Classes
Plus

The product of Monad `F` and `G`, `[x](F[x], G[x]])`, is a Monad

The product of Monad `F` and `G`, `[x](F[x], G[x]])`, is a Monad

Definition Classes
103. def product[G[_]](implicit G0: Bind[G]): Bind[[α](F[α], G[α])]

The product of Bind `F` and `G`, `[x](F[x], G[x]])`, is a Bind

The product of Bind `F` and `G`, `[x](F[x], G[x]])`, is a Bind

Definition Classes
Bind
104. def product[G[_]](implicit G0: Applicative[G]): Applicative[[α](F[α], G[α])]

The product of Applicatives `F` and `G`, `[x](F[x], G[x]])`, is an Applicative

The product of Applicatives `F` and `G`, `[x](F[x], G[x]])`, is an Applicative

Definition Classes
Applicative
105. def product[G[_]](implicit G0: Apply[G]): Apply[[α](F[α], G[α])]

The product of Applys `F` and `G`, `[x](F[x], G[x]])`, is a Apply

The product of Applys `F` and `G`, `[x](F[x], G[x]])`, is a Apply

Definition Classes
Apply
106. def product[G[_]](implicit G0: Functor[G]): Functor[[α](F[α], G[α])]

The product of Functors `F` and `G`, `[x](F[x], G[x]])`, is a Functor

The product of Functors `F` and `G`, `[x](F[x], G[x]])`, is a Functor

Definition Classes
Functor
107. final def pure[A](a: ⇒ A): F[A]
Definition Classes
Applicative
108. def replicateM[A](n: Int, fa: F[A]): F[List[A]]

Performs the action `n` times, returning the list of results.

Performs the action `n` times, returning the list of results.

Definition Classes
Applicative
109. def replicateM_[A](n: Int, fa: F[A]): F[Unit]

Performs the action `n` times, returning nothing.

Performs the action `n` times, returning nothing.

Definition Classes
Applicative
110. def rights[G[_, _], A, B](value: F[G[A, B]])(implicit G: Bifoldable[G]): F[B]

Generalized version of Haskell's `rights`

Generalized version of Haskell's `rights`

Definition Classes
111. def semigroup[A]: Semigroup[F[A]]
Definition Classes
Plus
112. def separate[G[_, _], A, B](value: F[G[A, B]])(implicit G: Bifoldable[G]): (F[A], F[B])

Generalized version of Haskell's `partitionEithers`

Generalized version of Haskell's `partitionEithers`

Definition Classes
113. def sequence[A, G[_]](as: G[F[A]])(implicit arg0: Traverse[G]): F[G[A]]
Definition Classes
Applicative
114. def sequence1[A, G[_]](as: G[F[A]])(implicit arg0: Traverse1[G]): F[G[A]]
Definition Classes
Apply
115. def some[A](a: F[A]): F[List[A]]

`empty` or a non-empty list of results acquired by repeating `a`.

`empty` or a non-empty list of results acquired by repeating `a`.

Definition Classes
ApplicativePlus
116. def strengthL[A, B](a: A, f: F[B]): F[(A, B)]

Inject `a` to the left of `B`s in `f`.

Inject `a` to the left of `B`s in `f`.

Definition Classes
Functor
117. def strengthR[A, B](f: F[A], b: B): F[(A, B)]

Inject `b` to the right of `A`s in `f`.

Inject `b` to the right of `A`s in `f`.

Definition Classes
Functor
Definition Classes
119. final def synchronized[T0](arg0: ⇒ T0): T0
Definition Classes
AnyRef
120. def toString()
Definition Classes
AnyRef → Any
121. def traverse[A, G[_], B](value: G[A])(f: (A) ⇒ F[B])(implicit G: Traverse[G]): F[G[B]]
Definition Classes
Applicative
122. def traverse1[A, G[_], B](value: G[A])(f: (A) ⇒ F[B])(implicit G: Traverse1[G]): F[G[B]]
Definition Classes
Apply
123. def tuple2[A, B](fa: ⇒ F[A], fb: ⇒ F[B]): F[(A, B)]
Definition Classes
Apply
124. def tuple3[A, B, C](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C]): F[(A, B, C)]
Definition Classes
Apply
125. def tuple4[A, B, C, D](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D]): F[(A, B, C, D)]
Definition Classes
Apply
126. def tuple5[A, B, C, D, E](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D], fe: ⇒ F[E]): F[(A, B, C, D, E)]
Definition Classes
Apply
127. def unite[T[_], A](value: F[T[A]])(implicit T: Foldable[T]): F[A]

Generalized version of Haskell's `catMaybes`

Generalized version of Haskell's `catMaybes`

Definition Classes
128. final def uniteU[T](value: F[T])(implicit T: Unapply[Foldable, T]): F[A]

A version of `unite` that infers the type constructor `T`.

A version of `unite` that infers the type constructor `T`.

Definition Classes
129. def unlessM[A](cond: Boolean)(f: ⇒ F[A]): F[Unit]

Returns the given argument if `cond` is `false`, otherwise, unit lifted into F.

Returns the given argument if `cond` is `false`, otherwise, unit lifted into F.

Definition Classes
Applicative
130. def untilM[G[_], A](f: F[A], cond: ⇒ F[Boolean])(implicit G: MonadPlus[G]): F[G[A]]

Execute an action repeatedly until the `Boolean` condition returns `true`.

Execute an action repeatedly until the `Boolean` condition returns `true`. The condition is evaluated after the loop body. Collects results into an arbitrary `MonadPlus` value, such as a `List`.

Definition Classes
131. def untilM_[A](f: F[A], cond: ⇒ F[Boolean]): F[Unit]

Execute an action repeatedly until the `Boolean` condition returns `true`.

Execute an action repeatedly until the `Boolean` condition returns `true`. The condition is evaluated after the loop body. Discards results.

Definition Classes
132. def void[A](fa: F[A]): F[Unit]

Empty `fa` of meaningful pure values, preserving its structure.

Empty `fa` of meaningful pure values, preserving its structure.

Definition Classes
Functor
133. final def wait(): Unit
Definition Classes
AnyRef
Annotations
@throws( ... )
134. final def wait(arg0: Long, arg1: Int): Unit
Definition Classes
AnyRef
Annotations
@throws( ... )
135. final def wait(arg0: Long): Unit
Definition Classes
AnyRef
Annotations
@native() @throws( ... )
136. def whenM[A](cond: Boolean)(f: ⇒ F[A]): F[Unit]

Returns the given argument if `cond` is `true`, otherwise, unit lifted into F.

Returns the given argument if `cond` is `true`, otherwise, unit lifted into F.

Definition Classes
Applicative
137. def whileM[G[_], A](p: F[Boolean], body: ⇒ F[A])(implicit G: MonadPlus[G]): F[G[A]]

Execute an action repeatedly as long as the given `Boolean` expression returns `true`.

Execute an action repeatedly as long as the given `Boolean` expression returns `true`. The condition is evalated before the loop body. Collects the results into an arbitrary `MonadPlus` value, such as a `List`.

Definition Classes
138. def whileM_[A](p: F[Boolean], body: ⇒ F[A]): F[Unit]

Execute an action repeatedly as long as the given `Boolean` expression returns `true`.

Execute an action repeatedly as long as the given `Boolean` expression returns `true`. The condition is evaluated before the loop body. Discards results.

Definition Classes
139. def widen[A, B](fa: F[A])(implicit ev: <~<[A, B]): F[B]

Functors are covariant by nature, so we can treat an `F[A]` as an `F[B]` if `A` is a subtype of `B`.

Functors are covariant by nature, so we can treat an `F[A]` as an `F[B]` if `A` is a subtype of `B`.

Definition Classes
Functor
140. def xmap[A, B](fa: F[A], f: (A) ⇒ B, g: (B) ⇒ A): F[B]

Converts `ma` to a value of type `F[B]` using the provided functions `f` and `g`.

Converts `ma` to a value of type `F[B]` using the provided functions `f` and `g`.

Definition Classes
FunctorInvariantFunctor
141. def xmapb[A, B](ma: F[A])(b: Bijection[A, B]): F[B]

Converts `ma` to a value of type `F[B]` using the provided bijection.

Converts `ma` to a value of type `F[B]` using the provided bijection.

Definition Classes
InvariantFunctor
142. def xmapi[A, B](ma: F[A])(iso: Isomorphism.<=>[A, B]): F[B]

Converts `ma` to a value of type `F[B]` using the provided isomorphism.

Converts `ma` to a value of type `F[B]` using the provided isomorphism.

Definition Classes
InvariantFunctor