t

# Trampoline 

#### type Trampoline[A] = Free[Function0, A]

A computation that can be stepped through, suspended, and paused

Source
Free.scala
Linear Supertypes
Ordering
1. Alphabetic
2. By Inheritance
Inherited
1. Trampoline
2. AnyRef
3. Any
1. Hide All
2. Show All
Visibility
1. Public
2. All

### Value Members

1. final def !=(arg0: Any)
Definition Classes
AnyRef → Any
2. final def ##(): Int
Definition Classes
AnyRef → Any
3. final def ==(arg0: Any)
Definition Classes
AnyRef → Any
4. final def >>=[B](f: (A) ⇒ Free[S, B]): Free[S, B]

Alias for `flatMap`

Alias for `flatMap`

Definition Classes
Free
5. final def asInstanceOf[T0]: T0
Definition Classes
Any
6. final def bounce(f: (S[Free[S, A]]) ⇒ Free[S, A])(implicit S: Functor[S]): Free[S, A]

Runs a single step, using a function that extracts the resumption from its suspension functor.

Runs a single step, using a function that extracts the resumption from its suspension functor.

Definition Classes
Free
7. def clone()
Attributes
protected[java.lang]
Definition Classes
AnyRef
Annotations
@native() @throws( ... )
8. def collect[B](implicit ev: =:=[Free[S, A], Source[B, A]]): (Vector[B], A)

Runs a `Source` all the way to the end, tail-recursively, collecting the produced values.

Runs a `Source` all the way to the end, tail-recursively, collecting the produced values.

Definition Classes
Free
9. def drain[E, B](source: Source[E, B])(implicit ev: =:=[Free[S, A], Sink[E, A]]): (A, B)

Feed the given source to this `Sink`.

Feed the given source to this `Sink`.

Definition Classes
Free
10. def drive[E, B](sink: Sink[Option[E], B])(implicit ev: =:=[Free[S, A], Source[E, A]]): (A, B)

Drive this `Source` with the given Sink.

Drive this `Source` with the given Sink.

Definition Classes
Free
11. def duplicateF: Free[[β\$10\$]Free[S, β\$10\$], A]

Duplication in `Free` as a comonad in the endofunctor category.

Duplication in `Free` as a comonad in the endofunctor category.

Definition Classes
Free
12. final def eq(arg0: AnyRef)
Definition Classes
AnyRef
13. def equals(arg0: Any)
Definition Classes
AnyRef → Any
14. def extendF[T[_]](f: ~>[[β\$13\$]Free[S, β\$13\$], T]): Free[T, A]

Extension in `Free` as a comonad in the endofunctor category.

Extension in `Free` as a comonad in the endofunctor category.

Definition Classes
Free
15. def extractF(implicit S: Monad[S]): S[A]

Extraction from `Free` as a comonad in the endofunctor category.

Extraction from `Free` as a comonad in the endofunctor category.

Definition Classes
Free
16. def feed[E](ss: Stream[E])(implicit ev: =:=[Free[S, A], Sink[E, A]]): A

Feed the given stream to this `Source`.

Feed the given stream to this `Source`.

Definition Classes
Free
17. def finalize(): Unit
Attributes
protected[java.lang]
Definition Classes
AnyRef
Annotations
@throws( classOf[java.lang.Throwable] )
18. final def flatMap[B](f: (A) ⇒ Free[S, B]): Free[S, B]

Binds the given continuation to the result of this computation.

Binds the given continuation to the result of this computation.

Definition Classes
Free
19. final def flatMapSuspension[T[_]](f: ~>[S, [β\$8\$]Free[T, β\$8\$]]): Free[T, A]

Substitutes a free monad over the given functor into the suspension functor of this program.

Substitutes a free monad over the given functor into the suspension functor of this program. `Free` is a monad in an endofunctor category and this is its monadic bind.

Definition Classes
Free
20. final def fold[B](r: (A) ⇒ B, s: (S[Free[S, A]]) ⇒ B)(implicit S: Functor[S]): B

Catamorphism.

Catamorphism. Run the first given function if Return, otherwise, the second given function.

Definition Classes
Free
21. final def foldMap[M[_]](f: ~>[S, M])(implicit M: Monad[M]): M[A]

Catamorphism for `Free`.

Catamorphism for `Free`. Runs to completion, mapping the suspension with the given transformation at each step and accumulating into the monad `M`.

Definition Classes
Free
22. final def foldMapRec[M[_]](f: ~>[S, M])(implicit M: Applicative[M], B: BindRec[M]): M[A]
Definition Classes
Free
23. final def foldRight[G[_]](z: ~>[Id.Id, G])(f: ~>[[α]S[G[α]], G])(implicit S: Functor[S]): G[A]

Folds this free recursion to the right using the given natural transformations.

Folds this free recursion to the right using the given natural transformations.

Definition Classes
Free
24. final def foldRun[B](b: B)(f: (B, S[Free[S, A]]) ⇒ (B, Free[S, A]))(implicit S: Functor[S]): (B, A)

Runs to completion, allowing the resumption function to thread an arbitrary state of type `B`.

Runs to completion, allowing the resumption function to thread an arbitrary state of type `B`.

Definition Classes
Free
25. final def foldRunM[M[_], B](b: B)(f: ~>[[α](B, S[α]), [α]M[(B, α)]])(implicit M0: Applicative[M], M1: BindRec[M]): M[(B, A)]

Variant of `foldRun` that allows to interleave effect `M` at each step.

Variant of `foldRun` that allows to interleave effect `M` at each step.

Definition Classes
Free
26. final def getClass(): Class[_]
Definition Classes
AnyRef → Any
Annotations
@native()
27. final def go(f: (S[Free[S, A]]) ⇒ Free[S, A])(implicit S: Functor[S]): A

Runs to completion, using a function that extracts the resumption from its suspension functor.

Runs to completion, using a function that extracts the resumption from its suspension functor.

Definition Classes
Free
28. def hashCode(): Int
Definition Classes
AnyRef → Any
Annotations
@native()
29. final def isInstanceOf[T0]
Definition Classes
Any
30. final def map[B](f: (A) ⇒ B): Free[S, B]
Definition Classes
Free
31. final def mapFirstSuspension(f: ~>[S, S]): Free[S, A]

Modifies the first suspension with the given natural transformation.

Modifies the first suspension with the given natural transformation.

Definition Classes
Free
32. final def mapSuspension[T[_]](f: ~>[S, T]): Free[T, A]

Changes the suspension functor by the given natural transformation.

Changes the suspension functor by the given natural transformation.

Definition Classes
Free
33. final def ne(arg0: AnyRef)
Definition Classes
AnyRef
34. final def notify(): Unit
Definition Classes
AnyRef
Annotations
@native()
35. final def notifyAll(): Unit
Definition Classes
AnyRef
Annotations
@native()
36. final def resume(implicit S: Functor[S]): \/[S[Free[S, A]], A]

Evaluates a single layer of the free monad *

Evaluates a single layer of the free monad *

Definition Classes
Free
Annotations
@tailrec()
37. final def run(implicit ev: =:=[Free[S, A], Trampoline[A]]): A

Runs a trampoline all the way to the end, tail-recursively.

Runs a trampoline all the way to the end, tail-recursively.

Definition Classes
Free
38. final def runM[M[_]](f: (S[Free[S, A]]) ⇒ M[Free[S, A]])(implicit S: Functor[S], M: Monad[M]): M[A]

Runs to completion, using a function that maps the resumption from `S` to a monad `M`.

Runs to completion, using a function that maps the resumption from `S` to a monad `M`.

Definition Classes
Free
Since

7.0.1

39. final def runRecM[M[_]](f: (S[Free[S, A]]) ⇒ M[Free[S, A]])(implicit S: Functor[S], M: Applicative[M], B: BindRec[M]): M[A]

Run Free using constant stack.

Run Free using constant stack.

Definition Classes
Free
40. final def step: Free[S, A]

Evaluate one layer in the free monad, re-associating any left-nested binds to the right and pulling the first suspension to the top.

Evaluate one layer in the free monad, re-associating any left-nested binds to the right and pulling the first suspension to the top.

Definition Classes
Free
Annotations
@tailrec()
41. final def synchronized[T0](arg0: ⇒ T0): T0
Definition Classes
AnyRef
42. def toFreeT(implicit S: Functor[S]): FreeT[S, Id.Id, A]
Definition Classes
Free
43. def toString()
Definition Classes
AnyRef → Any
44. final def wait(): Unit
Definition Classes
AnyRef
Annotations
@throws( ... )
45. final def wait(arg0: Long, arg1: Int): Unit
Definition Classes
AnyRef
Annotations
@throws( ... )
46. final def wait(arg0: Long): Unit
Definition Classes
AnyRef
Annotations
@native() @throws( ... )
47. final def zap[G[_], B](fs: Cofree[G, (A) ⇒ B])(implicit S: Functor[S], d: Zap[S, G]): B

Applies a function in a comonad to the corresponding value in this monad, annihilating both.

Applies a function in a comonad to the corresponding value in this monad, annihilating both.

Definition Classes
Free
48. final def zapWith[G[_], B, C](bs: Cofree[G, B])(f: (A, B) ⇒ C)(implicit S: Functor[S], d: Zap[S, G]): C

Applies a function `f` to a value in this monad and a corresponding value in the dual comonad, annihilating both.

Applies a function `f` to a value in this monad and a corresponding value in the dual comonad, annihilating both.

Definition Classes
Free
49. final def zipWith[B, C](tb: Free[S, B])(f: (A, B) ⇒ C): Free[S, C]

Interleave this computation with another, combining the results with the given function.

Interleave this computation with another, combining the results with the given function.

Definition Classes
Free