trait Divisible[F[_]] extends Divide[F] with ApplicativeDivisible[F]
Divisible
is the contravariant analogue of scalaz.Applicative
- Self Type
- Divisible[F]
- Source
- Divisible.scala
- See also
ZuriHac 2015 - Discrimination is Wrong: Improving Productivity
https://github.com/ekmett/contravariant/blob/v1.3.2/src/Data/Functor/Contravariant/Divisible.hs
- Alphabetic
- By Inheritance
- Divisible
- ApplicativeDivisible
- Divide
- ApplyDivide
- Contravariant
- InvariantFunctor
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Type Members
-
trait
ContravariantLaw extends InvariantFunctorLaw
- Definition Classes
- Contravariant
-
trait
DivideLaw extends ContravariantLaw
- Definition Classes
- Divide
- trait DivisibleLaw extends DivideLaw
-
trait
InvariantFunctorLaw extends AnyRef
- Definition Classes
- InvariantFunctor
Abstract Value Members
Concrete Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
val
applicativeDivisibleSyntax: ApplicativeDivisibleSyntax[F]
- Definition Classes
- ApplicativeDivisible
-
val
applyDivideSyntax: ApplyDivideSyntax[F]
- Definition Classes
- ApplyDivide
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
def
clone(): AnyRef
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @native() @throws( ... )
-
def
compose[G[_]](implicit G0: Contravariant[G]): Functor[[α]F[G[α]]]
The composition of Contravariant F and G,
[x]F[G[x]]
, is covariant.The composition of Contravariant F and G,
[x]F[G[x]]
, is covariant.- Definition Classes
- Contravariant
-
def
contramap[A, B](fa: F[A])(f: (B) ⇒ A): F[B]
Transform
A
.Transform
A
.- Definition Classes
- Divisible → Contravariant
- Note
contramap(r)(identity)
=r
-
def
contravariantLaw: ContravariantLaw
- Definition Classes
- Contravariant
-
val
contravariantSyntax: ContravariantSyntax[F]
- Definition Classes
- Contravariant
-
final
def
divide[A, B, C](fa: ⇒ F[A], fb: ⇒ F[B])(f: (C) ⇒ (A, B)): F[C]
- Definition Classes
- Divide
-
final
def
divide1[A1, Z](a1: F[A1])(f: (Z) ⇒ A1): F[Z]
- Definition Classes
- Divide
-
def
divide3[A1, A2, A3, Z](a1: ⇒ F[A1], a2: ⇒ F[A2], a3: ⇒ F[A3])(f: (Z) ⇒ (A1, A2, A3)): F[Z]
- Definition Classes
- Divide
-
def
divide4[A1, A2, A3, A4, Z](a1: ⇒ F[A1], a2: ⇒ F[A2], a3: ⇒ F[A3], a4: ⇒ F[A4])(f: (Z) ⇒ (A1, A2, A3, A4)): F[Z]
- Definition Classes
- Divide
-
def
divideLaw: DivideLaw
- Definition Classes
- Divide
-
val
divideSyntax: DivideSyntax[F]
- Definition Classes
- Divide
-
final
def
dividing1[A1, Z](f: (Z) ⇒ A1)(implicit a1: F[A1]): F[Z]
- Definition Classes
- Divide
-
final
def
dividing2[A1, A2, Z](f: (Z) ⇒ (A1, A2))(implicit a1: F[A1], a2: F[A2]): F[Z]
- Definition Classes
- Divide
-
final
def
dividing3[A1, A2, A3, Z](f: (Z) ⇒ (A1, A2, A3))(implicit a1: F[A1], a2: F[A2], a3: F[A3]): F[Z]
- Definition Classes
- Divide
-
final
def
dividing4[A1, A2, A3, A4, Z](f: (Z) ⇒ (A1, A2, A3, A4))(implicit a1: F[A1], a2: F[A2], a3: F[A3], a4: F[A4]): F[Z]
- Definition Classes
- Divide
- def divisibleLaw: DivisibleLaw
- val divisibleSyntax: DivisibleSyntax[F]
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
finalize(): Unit
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
def
icompose[G[_]](implicit G0: Functor[G]): Contravariant[[α]F[G[α]]]
The composition of Contravariant F and Functor G,
[x]F[G[x]]
, is contravariant.The composition of Contravariant F and Functor G,
[x]F[G[x]]
, is contravariant.- Definition Classes
- Contravariant
-
def
invariantFunctorLaw: InvariantFunctorLaw
- Definition Classes
- InvariantFunctor
-
val
invariantFunctorSyntax: InvariantFunctorSyntax[F]
- Definition Classes
- InvariantFunctor
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
def
product[G[_]](implicit G0: Contravariant[G]): Contravariant[[α](F[α], G[α])]
The product of Contravariant
F
andG
,[x](F[x], G[x]])
, is contravariant.The product of Contravariant
F
andG
,[x](F[x], G[x]])
, is contravariant.- Definition Classes
- Contravariant
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
def
toString(): String
- Definition Classes
- AnyRef → Any
-
def
tuple2[A1, A2](a1: ⇒ F[A1], a2: ⇒ F[A2]): F[(A1, A2)]
- Definition Classes
- Divide
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @throws( ... )
-
final
def
xderiving0[Z](z: Z): F[Z]
- Definition Classes
- ApplicativeDivisible
-
final
def
xderiving1[Z, A1](f: (A1) ⇒ Z, g: (Z) ⇒ A1)(implicit a1: F[A1]): F[Z]
- Definition Classes
- ApplyDivide
-
final
def
xderiving2[Z, A1, A2](f: (A1, A2) ⇒ Z, g: (Z) ⇒ (A1, A2))(implicit a1: F[A1], a2: F[A2]): F[Z]
- Definition Classes
- ApplyDivide
-
final
def
xderiving3[Z, A1, A2, A3](f: (A1, A2, A3) ⇒ Z, g: (Z) ⇒ (A1, A2, A3))(implicit a1: F[A1], a2: F[A2], a3: F[A3]): F[Z]
- Definition Classes
- ApplyDivide
-
final
def
xderiving4[Z, A1, A2, A3, A4](f: (A1, A2, A3, A4) ⇒ Z, g: (Z) ⇒ (A1, A2, A3, A4))(implicit a1: F[A1], a2: F[A2], a3: F[A3], a4: F[A4]): F[Z]
- Definition Classes
- ApplyDivide
-
def
xmap[A, B](fa: F[A], f: (A) ⇒ B, g: (B) ⇒ A): F[B]
Converts
ma
to a value of typeF[B]
using the provided functionsf
andg
.Converts
ma
to a value of typeF[B]
using the provided functionsf
andg
.- Definition Classes
- Contravariant → InvariantFunctor
-
def
xmapb[A, B](ma: F[A])(b: Bijection[A, B]): F[B]
Converts
ma
to a value of typeF[B]
using the provided bijection.Converts
ma
to a value of typeF[B]
using the provided bijection.- Definition Classes
- InvariantFunctor
-
def
xmapi[A, B](ma: F[A])(iso: Isomorphism.<=>[A, B]): F[B]
Converts
ma
to a value of typeF[B]
using the provided isomorphism.Converts
ma
to a value of typeF[B]
using the provided isomorphism.- Definition Classes
- InvariantFunctor
-
def
xproduct0[Z](z: ⇒ Z): F[Z]
- Definition Classes
- Divisible → ApplicativeDivisible
-
def
xproduct1[Z, A1](a1: F[A1])(f: (A1) ⇒ Z, g: (Z) ⇒ A1): F[Z]
- Definition Classes
- ApplyDivide
-
final
def
xproduct2[Z, A1, A2](a1: ⇒ F[A1], a2: ⇒ F[A2])(f: (A1, A2) ⇒ Z, g: (Z) ⇒ (A1, A2)): F[Z]
- Definition Classes
- Divide → ApplyDivide
-
final
def
xproduct3[Z, A1, A2, A3](a1: ⇒ F[A1], a2: ⇒ F[A2], a3: ⇒ F[A3])(f: (A1, A2, A3) ⇒ Z, g: (Z) ⇒ (A1, A2, A3)): F[Z]
- Definition Classes
- Divide → ApplyDivide
-
final
def
xproduct4[Z, A1, A2, A3, A4](a1: ⇒ F[A1], a2: ⇒ F[A2], a3: ⇒ F[A3], a4: ⇒ F[A4])(f: (A1, A2, A3, A4) ⇒ Z, g: (Z) ⇒ (A1, A2, A3, A4)): F[Z]
- Definition Classes
- Divide → ApplyDivide