Packages

trait Divisible[F[_]] extends Divide[F] with ApplicativeDivisible[F]

Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. Divisible
  2. ApplicativeDivisible
  3. Divide
  4. ApplyDivide
  5. Contravariant
  6. InvariantFunctor
  7. AnyRef
  8. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Type Members

  1. trait ContravariantLaw extends InvariantFunctorLaw
    Definition Classes
    Contravariant
  2. trait DivideLaw extends ContravariantLaw
    Definition Classes
    Divide
  3. trait DivisibleLaw extends DivideLaw
  4. trait InvariantFunctorLaw extends AnyRef
    Definition Classes
    InvariantFunctor

Abstract Value Members

  1. abstract def conquer[A]: F[A]

    Universally quantified instance of F[_]

  2. abstract def divide2[A1, A2, Z](a1: ⇒ F[A1], a2: ⇒ F[A2])(f: (Z) ⇒ (A1, A2)): F[Z]
    Definition Classes
    Divide

Concrete Value Members

  1. final def !=(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  4. val applicativeDivisibleSyntax: ApplicativeDivisibleSyntax[F]
    Definition Classes
    ApplicativeDivisible
  5. val applyDivideSyntax: ApplyDivideSyntax[F]
    Definition Classes
    ApplyDivide
  6. final def asInstanceOf[T0]: T0
    Definition Classes
    Any
  7. def clone(): AnyRef
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @native() @throws( ... )
  8. def compose[G[_]](implicit G0: Contravariant[G]): Functor[[α]F[G[α]]]

    The composition of Contravariant F and G, [x]F[G[x]], is covariant.

    The composition of Contravariant F and G, [x]F[G[x]], is covariant.

    Definition Classes
    Contravariant
  9. def contramap[A, B](fa: F[A])(f: (B) ⇒ A): F[B]

    Transform A.

    Transform A.

    Definition Classes
    DivisibleContravariant
    Note

    contramap(r)(identity) = r

  10. def contravariantLaw: ContravariantLaw
    Definition Classes
    Contravariant
  11. val contravariantSyntax: ContravariantSyntax[F]
    Definition Classes
    Contravariant
  12. final def divide[A, B, C](fa: ⇒ F[A], fb: ⇒ F[B])(f: (C) ⇒ (A, B)): F[C]
    Definition Classes
    Divide
  13. final def divide1[A1, Z](a1: F[A1])(f: (Z) ⇒ A1): F[Z]
    Definition Classes
    Divide
  14. def divide3[A1, A2, A3, Z](a1: ⇒ F[A1], a2: ⇒ F[A2], a3: ⇒ F[A3])(f: (Z) ⇒ (A1, A2, A3)): F[Z]
    Definition Classes
    Divide
  15. def divide4[A1, A2, A3, A4, Z](a1: ⇒ F[A1], a2: ⇒ F[A2], a3: ⇒ F[A3], a4: ⇒ F[A4])(f: (Z) ⇒ (A1, A2, A3, A4)): F[Z]
    Definition Classes
    Divide
  16. def divideLaw: DivideLaw
    Definition Classes
    Divide
  17. val divideSyntax: DivideSyntax[F]
    Definition Classes
    Divide
  18. final def dividing1[A1, Z](f: (Z) ⇒ A1)(implicit a1: F[A1]): F[Z]
    Definition Classes
    Divide
  19. final def dividing2[A1, A2, Z](f: (Z) ⇒ (A1, A2))(implicit a1: F[A1], a2: F[A2]): F[Z]
    Definition Classes
    Divide
  20. final def dividing3[A1, A2, A3, Z](f: (Z) ⇒ (A1, A2, A3))(implicit a1: F[A1], a2: F[A2], a3: F[A3]): F[Z]
    Definition Classes
    Divide
  21. final def dividing4[A1, A2, A3, A4, Z](f: (Z) ⇒ (A1, A2, A3, A4))(implicit a1: F[A1], a2: F[A2], a3: F[A3], a4: F[A4]): F[Z]
    Definition Classes
    Divide
  22. def divisibleLaw: DivisibleLaw
  23. val divisibleSyntax: DivisibleSyntax[F]
  24. final def eq(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  25. def equals(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  26. def finalize(): Unit
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  27. final def getClass(): Class[_]
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  28. def hashCode(): Int
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  29. def icompose[G[_]](implicit G0: Functor[G]): Contravariant[[α]F[G[α]]]

    The composition of Contravariant F and Functor G, [x]F[G[x]], is contravariant.

    The composition of Contravariant F and Functor G, [x]F[G[x]], is contravariant.

    Definition Classes
    Contravariant
  30. def invariantFunctorLaw: InvariantFunctorLaw
    Definition Classes
    InvariantFunctor
  31. val invariantFunctorSyntax: InvariantFunctorSyntax[F]
    Definition Classes
    InvariantFunctor
  32. final def isInstanceOf[T0]: Boolean
    Definition Classes
    Any
  33. final def ne(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  34. final def notify(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  35. final def notifyAll(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  36. def product[G[_]](implicit G0: Contravariant[G]): Contravariant[[α](F[α], G[α])]

    The product of Contravariant F and G, [x](F[x], G[x]]), is contravariant.

    The product of Contravariant F and G, [x](F[x], G[x]]), is contravariant.

    Definition Classes
    Contravariant
  37. final def synchronized[T0](arg0: ⇒ T0): T0
    Definition Classes
    AnyRef
  38. def toString(): String
    Definition Classes
    AnyRef → Any
  39. def tuple2[A1, A2](a1: ⇒ F[A1], a2: ⇒ F[A2]): F[(A1, A2)]
    Definition Classes
    Divide
  40. final def wait(): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  41. final def wait(arg0: Long, arg1: Int): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  42. final def wait(arg0: Long): Unit
    Definition Classes
    AnyRef
    Annotations
    @native() @throws( ... )
  43. final def xderiving0[Z](z: Z): F[Z]
    Definition Classes
    ApplicativeDivisible
  44. final def xderiving1[Z, A1](f: (A1) ⇒ Z, g: (Z) ⇒ A1)(implicit a1: F[A1]): F[Z]
    Definition Classes
    ApplyDivide
  45. final def xderiving2[Z, A1, A2](f: (A1, A2) ⇒ Z, g: (Z) ⇒ (A1, A2))(implicit a1: F[A1], a2: F[A2]): F[Z]
    Definition Classes
    ApplyDivide
  46. final def xderiving3[Z, A1, A2, A3](f: (A1, A2, A3) ⇒ Z, g: (Z) ⇒ (A1, A2, A3))(implicit a1: F[A1], a2: F[A2], a3: F[A3]): F[Z]
    Definition Classes
    ApplyDivide
  47. final def xderiving4[Z, A1, A2, A3, A4](f: (A1, A2, A3, A4) ⇒ Z, g: (Z) ⇒ (A1, A2, A3, A4))(implicit a1: F[A1], a2: F[A2], a3: F[A3], a4: F[A4]): F[Z]
    Definition Classes
    ApplyDivide
  48. def xmap[A, B](fa: F[A], f: (A) ⇒ B, g: (B) ⇒ A): F[B]

    Converts ma to a value of type F[B] using the provided functions f and g.

    Converts ma to a value of type F[B] using the provided functions f and g.

    Definition Classes
    ContravariantInvariantFunctor
  49. def xmapb[A, B](ma: F[A])(b: Bijection[A, B]): F[B]

    Converts ma to a value of type F[B] using the provided bijection.

    Converts ma to a value of type F[B] using the provided bijection.

    Definition Classes
    InvariantFunctor
  50. def xmapi[A, B](ma: F[A])(iso: Isomorphism.<=>[A, B]): F[B]

    Converts ma to a value of type F[B] using the provided isomorphism.

    Converts ma to a value of type F[B] using the provided isomorphism.

    Definition Classes
    InvariantFunctor
  51. def xproduct0[Z](z: ⇒ Z): F[Z]
    Definition Classes
    DivisibleApplicativeDivisible
  52. def xproduct1[Z, A1](a1: F[A1])(f: (A1) ⇒ Z, g: (Z) ⇒ A1): F[Z]
    Definition Classes
    ApplyDivide
  53. final def xproduct2[Z, A1, A2](a1: ⇒ F[A1], a2: ⇒ F[A2])(f: (A1, A2) ⇒ Z, g: (Z) ⇒ (A1, A2)): F[Z]
    Definition Classes
    DivideApplyDivide
  54. final def xproduct3[Z, A1, A2, A3](a1: ⇒ F[A1], a2: ⇒ F[A2], a3: ⇒ F[A3])(f: (A1, A2, A3) ⇒ Z, g: (Z) ⇒ (A1, A2, A3)): F[Z]
    Definition Classes
    DivideApplyDivide
  55. final def xproduct4[Z, A1, A2, A3, A4](a1: ⇒ F[A1], a2: ⇒ F[A2], a3: ⇒ F[A3], a4: ⇒ F[A4])(f: (A1, A2, A3, A4) ⇒ Z, g: (Z) ⇒ (A1, A2, A3, A4)): F[Z]
    Definition Classes
    DivideApplyDivide

Inherited from ApplicativeDivisible[F]

Inherited from Divide[F]

Inherited from ApplyDivide[F]

Inherited from Contravariant[F]

Inherited from InvariantFunctor[F]

Inherited from AnyRef

Inherited from Any

Ungrouped