Packages

sealed abstract class Free[S[_], A] extends AnyRef

A free monad for a type constructor S. Binding is done using the heap instead of the stack, allowing tail-call elimination.

Source
Free.scala
Linear Supertypes
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. Free
  2. AnyRef
  3. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Value Members

  1. final def !=(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  4. final def >>=[B](f: (A) ⇒ Free[S, B]): Free[S, B]

    Alias for flatMap

  5. final def asInstanceOf[T0]: T0
    Definition Classes
    Any
  6. final def bounce(f: (S[Free[S, A]]) ⇒ Free[S, A])(implicit S: Functor[S]): Free[S, A]

    Runs a single step, using a function that extracts the resumption from its suspension functor.

  7. def clone(): AnyRef
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @native() @throws( ... )
  8. def collect[B](implicit ev: =:=[Free[S, A], Source[B, A]]): (Vector[B], A)

    Runs a Source all the way to the end, tail-recursively, collecting the produced values.

  9. def drain[E, B](source: Source[E, B])(implicit ev: =:=[Free[S, A], Sink[E, A]]): (A, B)

    Feed the given source to this Sink.

  10. def drive[E, B](sink: Sink[Option[E], B])(implicit ev: =:=[Free[S, A], Source[E, A]]): (A, B)

    Drive this Source with the given Sink.

  11. def duplicateF: Free[[β$14$]Free[S, β$14$], A]

    Duplication in Free as a comonad in the endofunctor category.

  12. final def eq(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  13. def equals(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  14. def extendF[T[_]](f: ~>[[β$17$]Free[S, β$17$], T]): Free[T, A]

    Extension in Free as a comonad in the endofunctor category.

  15. def extractF(implicit S: Monad[S]): S[A]

    Extraction from Free as a comonad in the endofunctor category.

  16. def feed[E](ss: Stream[E])(implicit ev: =:=[Free[S, A], Sink[E, A]]): A

    Feed the given stream to this Source.

  17. def finalize(): Unit
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  18. final def flatMap[B](f: (A) ⇒ Free[S, B]): Free[S, B]

    Binds the given continuation to the result of this computation.

  19. final def flatMapSuspension[T[_]](f: ~>[S, [β$8$]Free[T, β$8$]]): Free[T, A]

    Substitutes a free monad over the given functor into the suspension functor of this program.

    Substitutes a free monad over the given functor into the suspension functor of this program. Free is a monad in an endofunctor category and this is its monadic bind.

  20. final def fold[B](r: (A) ⇒ B, s: (S[Free[S, A]]) ⇒ B)(implicit S: Functor[S]): B

    Catamorphism.

    Catamorphism. Run the first given function if Return, otherwise, the second given function.

  21. final def foldMap[M[_]](f: ~>[S, M])(implicit M: Monad[M]): M[A]

    Catamorphism for Free.

    Catamorphism for Free. Runs to completion, mapping the suspension with the given transformation at each step and accumulating into the monad M.

  22. final def foldMapRec[M[_]](f: ~>[S, M])(implicit M: Applicative[M], B: BindRec[M]): M[A]
  23. final def foldRight[G[_]](z: ~>[Id.Id, G])(f: ~>[[α]S[G[α]], G])(implicit S: Functor[S]): G[A]

    Folds this free recursion to the right using the given natural transformations.

  24. final def foldRun[B](b: B)(f: ~>[[α](B, S[α]), [β$10$](B, β$10$)]): (B, A)

    Runs to completion, allowing the resumption function to thread an arbitrary state of type B.

    Runs to completion, allowing the resumption function to thread an arbitrary state of type B.

    Annotations
    @tailrec()
  25. final def foldRunM[M[_], B](b: B)(f: ~>[[α](B, S[α]), [α]M[(B, α)]])(implicit M0: Applicative[M], M1: BindRec[M]): M[(B, A)]

    Variant of foldRun that allows to interleave effect M at each step.

  26. final def getClass(): Class[_]
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  27. final def go(f: (S[Free[S, A]]) ⇒ Free[S, A])(implicit S: Functor[S]): A

    Runs to completion, using a function that extracts the resumption from its suspension functor.

  28. def hashCode(): Int
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  29. final def isInstanceOf[T0]: Boolean
    Definition Classes
    Any
  30. final def map[B](f: (A) ⇒ B): Free[S, B]
  31. final def mapFirstSuspension(f: ~>[S, S]): Free[S, A]

    Modifies the first suspension with the given natural transformation.

  32. final def mapSuspension[T[_]](f: ~>[S, T]): Free[T, A]

    Changes the suspension functor by the given natural transformation.

  33. final def ne(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  34. final def notify(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  35. final def notifyAll(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  36. final def resume(implicit S: Functor[S]): \/[S[Free[S, A]], A]

    Evaluates a single layer of the free monad *

  37. final def resumeC: \/[Coyoneda[S, Free[S, A]], A]

    Evaluates a single layer of the free monad *

    Evaluates a single layer of the free monad *

    Annotations
    @tailrec()
  38. final def run(implicit ev: =:=[Free[S, A], Trampoline[A]]): A

    Runs a trampoline all the way to the end, tail-recursively.

  39. final def runM[M[_]](f: (S[Free[S, A]]) ⇒ M[Free[S, A]])(implicit S: Functor[S], M: Monad[M]): M[A]

    Runs to completion, using a function that maps the resumption from S to a monad M.

    Runs to completion, using a function that maps the resumption from S to a monad M.

    Since

    7.0.1

  40. final def runRecM[M[_]](f: (S[Free[S, A]]) ⇒ M[Free[S, A]])(implicit S: Functor[S], M: Applicative[M], B: BindRec[M]): M[A]

    Run Free using constant stack.

  41. final def step: Free[S, A]

    Evaluate one layer in the free monad, re-associating any left-nested binds to the right and pulling the first suspension to the top.

    Evaluate one layer in the free monad, re-associating any left-nested binds to the right and pulling the first suspension to the top.

    Annotations
    @tailrec()
  42. final def synchronized[T0](arg0: ⇒ T0): T0
    Definition Classes
    AnyRef
  43. def toFreeT: FreeT[S, Id.Id, A]
  44. def toString(): String
    Definition Classes
    AnyRef → Any
  45. final def wait(): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  46. final def wait(arg0: Long, arg1: Int): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  47. final def wait(arg0: Long): Unit
    Definition Classes
    AnyRef
    Annotations
    @native() @throws( ... )
  48. final def zap[G[_], B](fs: Cofree[G, (A) ⇒ B])(implicit d: Zap[S, G]): B

    Applies a function in a comonad to the corresponding value in this monad, annihilating both.

  49. final def zapWith[G[_], B, C](bs: Cofree[G, B])(f: (A, B) ⇒ C)(implicit d: Zap[S, G]): C

    Applies a function f to a value in this monad and a corresponding value in the dual comonad, annihilating both.

  50. final def zipWith[B, C](tb: Free[S, B])(f: (A, B) ⇒ C): Free[S, C]

    Interleave this computation with another, combining the results with the given function.

Inherited from AnyRef

Inherited from Any

Ungrouped