trait IsomorphismMonoid[F, G] extends Monoid[F] with IsomorphismSemigroup[F, G]
- Source
- Monoid.scala
- Alphabetic
- By Inheritance
- IsomorphismMonoid
- IsomorphismSemigroup
- Monoid
- Semigroup
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Type Members
-
trait
MonoidLaw extends SemigroupLaw
Monoid instances must satisfy scalaz.Semigroup.SemigroupLaw and 2 additional laws:
Monoid instances must satisfy scalaz.Semigroup.SemigroupLaw and 2 additional laws:
- left identity:
forall a. append(zero, a) == a
- right identity :
forall a. append(a, zero) == a
- Definition Classes
- Monoid
- left identity:
-
trait
SemigroupApply extends Apply[[α]F]
- Attributes
- protected[this]
- Definition Classes
- Semigroup
-
trait
SemigroupCompose extends Compose[[α, β]F]
- Attributes
- protected[this]
- Definition Classes
- Semigroup
-
trait
SemigroupLaw extends AnyRef
A semigroup in type F must satisfy two laws:
A semigroup in type F must satisfy two laws:
- closure:
∀ a, b in F, append(a, b)
is also inF
. This is enforced by the type system. - associativity:
∀ a, b, c
inF
, the equationappend(append(a, b), c) = append(a, append(b , c))
holds.
- Definition Classes
- Semigroup
- closure:
Abstract Value Members
-
implicit abstract
def
G: Monoid[G]
- Definition Classes
- IsomorphismMonoid → IsomorphismSemigroup
-
abstract
def
iso: Isomorphism.<=>[F, G]
- Definition Classes
- IsomorphismSemigroup
Concrete Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
append(f1: F, f2: ⇒ F): F
The binary operation to combine
f1
andf2
.The binary operation to combine
f1
andf2
.Implementations should not evaluate the by-name parameter
f2
if result can be determined byf1
.- Definition Classes
- IsomorphismSemigroup → Semigroup
-
final
def
applicative: Applicative[[α]F]
A monoidal applicative functor, that implements
point
andap
with the operationszero
andappend
respectively.A monoidal applicative functor, that implements
point
andap
with the operationszero
andappend
respectively. Note that the type parameterα
inApplicative[λ[α => F]]
is discarded; it is a phantom type. As such, the functor cannot support scalaz.Bind.- Definition Classes
- Monoid
-
final
def
apply: Apply[[α]F]
An scalaz.Apply, that implements
ap
withappend
.An scalaz.Apply, that implements
ap
withappend
. Note that the type parameterα
inApply[λ[α => F]]
is discarded; it is a phantom type. As such, the functor cannot support scalaz.Bind.- Definition Classes
- Semigroup
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
final
def
category: Category[[α, β]F]
Every
Monoid
gives rise to a scalaz.Category, for which the type parameters are phantoms.Every
Monoid
gives rise to a scalaz.Category, for which the type parameters are phantoms.- Definition Classes
- Monoid
- Note
category.monoid
=this
-
def
clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
-
final
def
compose: Compose[[α, β]F]
Every
Semigroup
gives rise to a scalaz.Compose, for which the type parameters are phantoms.Every
Semigroup
gives rise to a scalaz.Compose, for which the type parameters are phantoms.- Definition Classes
- Semigroup
- Note
compose.semigroup
=this
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
final
def
ifEmpty[B](a: F)(t: ⇒ B)(f: ⇒ B)(implicit eq: Equal[F]): B
- Definition Classes
- Monoid
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
def
isMZero(a: F)(implicit eq: Equal[F]): Boolean
Whether
a
==zero
.Whether
a
==zero
.- Definition Classes
- Monoid
-
def
monoidLaw: MonoidLaw
- Definition Classes
- Monoid
-
val
monoidSyntax: MonoidSyntax[F]
- Definition Classes
- Monoid
-
def
multiply(value: F, n: Int): F
For
n = 0
,zero
Forn = 1
,append(zero, value)
Forn = 2
,append(append(zero, value), value)
For
n = 0
,zero
Forn = 1
,append(zero, value)
Forn = 2
,append(append(zero, value), value)
- Definition Classes
- Monoid
-
def
multiply1(value: F, n: Int): F
For
n = 0
,value
Forn = 1
,append(value, value)
Forn = 2
,append(append(value, value), value)
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
final
def
onEmpty[A, B](a: F)(v: ⇒ B)(implicit eq: Equal[F], mb: Monoid[B]): B
- Definition Classes
- Monoid
-
final
def
onNotEmpty[B](a: F)(v: ⇒ B)(implicit eq: Equal[F], mb: Monoid[B]): B
- Definition Classes
- Monoid
-
def
semigroupLaw: SemigroupLaw
- Definition Classes
- Semigroup
-
val
semigroupSyntax: SemigroupSyntax[F]
- Definition Classes
- Semigroup
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
def
toString(): String
- Definition Classes
- AnyRef → Any
-
def
unfoldlSum[S](seed: S)(f: (S) ⇒ Maybe[(S, F)]): F
- Definition Classes
- Monoid
-
def
unfoldlSumOpt[S](seed: S)(f: (S) ⇒ Maybe[(S, F)]): Maybe[F]
Unfold
seed
to the left and sum using #append. -
def
unfoldrSum[S](seed: S)(f: (S) ⇒ Maybe[(F, S)]): F
- Definition Classes
- Monoid
-
def
unfoldrSumOpt[S](seed: S)(f: (S) ⇒ Maybe[(F, S)]): Maybe[F]
Unfold
seed
to the right and sum using #append. -
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
-
def
zero: F
The identity element for
append
.The identity element for
append
.- Definition Classes
- IsomorphismMonoid → Monoid