Packages

trait Enum[F] extends Order[F]

An scalaz.Orderable with discrete values.

Self Type
Enum[F]
Source
Enum.scala
Linear Supertypes
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. Enum
  2. Order
  3. Equal
  4. AnyRef
  5. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Type Members

  1. trait EnumLaw extends OrderLaw
  2. trait EqualLaw extends AnyRef
    Definition Classes
    Equal
  3. trait OrderLaw extends EqualLaw
    Definition Classes
    Order

Abstract Value Members

  1. abstract def order(x: F, y: F): Ordering
    Definition Classes
    Order
  2. abstract def pred(a: F): F
  3. abstract def succ(a: F): F

Concrete Value Members

  1. final def !=(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  4. def apply(x: F, y: F): Ordering
    Definition Classes
    Order
  5. final def asInstanceOf[T0]: T0
    Definition Classes
    Any
  6. def clone(): AnyRef
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @native() @throws(classOf[java.lang.CloneNotSupportedException])
  7. def contramap[B](f: (B) ⇒ F): Order[B]
    Definition Classes
    OrderEqual
  8. def enumLaw: EnumLaw
  9. val enumSyntax: EnumSyntax[F]
  10. final def eq(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  11. def equal(x: F, y: F): Boolean
    Definition Classes
    OrderEqual
  12. def equalIsNatural: Boolean

    returns

    true, if equal(f1, f2) is known to be equivalent to f1 == f2

    Definition Classes
    Equal
  13. def equalLaw: EqualLaw
    Definition Classes
    Equal
  14. val equalSyntax: EqualSyntax[F]
    Definition Classes
    Equal
  15. def equals(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  16. def finalize(): Unit
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws(classOf[java.lang.Throwable])
  17. def from(a: F): EphemeralStream[F]
  18. def fromStep(n: Int, a: F): EphemeralStream[F]
  19. def fromStepTo(n: Int, a: F, z: F): EphemeralStream[F]
  20. def fromStepToL(n: Int, a: F, z: F): List[F]
  21. def fromTo(a: F, z: F): EphemeralStream[F]
  22. def fromToL(a: F, z: F): List[F]
  23. final def getClass(): Class[_]
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  24. def greaterThan(x: F, y: F): Boolean
    Definition Classes
    Order
  25. def greaterThanOrEqual(x: F, y: F): Boolean
    Definition Classes
    Order
  26. def hashCode(): Int
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  27. final def isInstanceOf[T0]: Boolean
    Definition Classes
    Any
  28. def lessThan(x: F, y: F): Boolean
    Definition Classes
    Order
  29. def lessThanOrEqual(x: F, y: F): Boolean
    Definition Classes
    Order
  30. def max: Option[F]
  31. def max(x: F, y: F): F
    Definition Classes
    Order
  32. def min: Option[F]
  33. def min(x: F, y: F): F
    Definition Classes
    Order
  34. final def ne(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  35. final def notify(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  36. final def notifyAll(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  37. def orderLaw: OrderLaw
    Definition Classes
    Order
  38. val orderSyntax: OrderSyntax[F]
    Definition Classes
    Order
  39. def predState[X](f: (F) ⇒ X): State[F, X]

    Produce a state value that executes the predecessor (pred) on each spin and executing the given function on the current value.

    Produce a state value that executes the predecessor (pred) on each spin and executing the given function on the current value. This is useful to implement decremental looping. Evaluating the state value requires a beginning to decrement from.

    f

    The function to execute on each spin of the state value.

  40. def predStateMax[X, Y](f: (F) ⇒ X, k: (X) ⇒ Y): Option[Y]

    Produce a value that starts at the maximum (if it exists) and decrements through a state value with the given mapping function.

    Produce a value that starts at the maximum (if it exists) and decrements through a state value with the given mapping function. This is useful to implement decremental looping.

    f

    The function to execute on each spin of the state value.

    k

    The mapping function.

  41. def predStateMaxM[X, Y](f: (F) ⇒ X, k: (X) ⇒ State[F, Y]): Option[Y]

    Produce a value that starts at the maximum (if it exists) and decrements through a state value with the given binding function.

    Produce a value that starts at the maximum (if it exists) and decrements through a state value with the given binding function. This is useful to implement decremental looping.

    f

    The function to execute on each spin of the state value.

    k

    The binding function.

  42. def predStateZero[X, Y](f: (F) ⇒ X, k: (X) ⇒ Y)(implicit m: Monoid[F]): Y

    Produce a value that starts at zero (Monoid.zero) and decrements through a state value with the given mapping function.

    Produce a value that starts at zero (Monoid.zero) and decrements through a state value with the given mapping function. This is useful to implement decremental looping.

    f

    The function to execute on each spin of the state value.

    k

    The mapping function.

    m

    The implementation of the zero function from which to start.

  43. def predStateZeroM[X, Y](f: (F) ⇒ X, k: (X) ⇒ State[F, Y])(implicit m: Monoid[F]): Y

    Produce a value that starts at zero (Monoid.zero) and decrements through a state value with the given binding function.

    Produce a value that starts at zero (Monoid.zero) and decrements through a state value with the given binding function. This is useful to implement decremental looping.

    f

    The function to execute on each spin of the state value.

    k

    The binding function.

    m

    The implementation of the zero function from which to start.

  44. def predn(n: Int, a: F): F
  45. def predx: Kleisli[Option, F, F]

    Moves to the predecessor, unless at the minimum.

  46. def reverseOrder: Order[F]
    Definition Classes
    Order
  47. def sort(x: F, y: F): (F, F)
    Definition Classes
    Order
  48. def succState[X](f: (F) ⇒ X): State[F, X]

    Produce a state value that executes the successor (succ) on each spin and executing the given function on the current value.

    Produce a state value that executes the successor (succ) on each spin and executing the given function on the current value. This is useful to implement incremental looping. Evaluating the state value requires a beginning to increment from.

    f

    The function to execute on each spin of the state value.

  49. def succStateMin[X, Y](f: (F) ⇒ X, k: (X) ⇒ Y): Option[Y]

    Produce a value that starts at the minimum (if it exists) and increments through a state value with the given mapping function.

    Produce a value that starts at the minimum (if it exists) and increments through a state value with the given mapping function. This is useful to implement incremental looping.

    f

    The function to execute on each spin of the state value.

    k

    The mapping function.

  50. def succStateMinM[X, Y](f: (F) ⇒ X, k: (X) ⇒ State[F, Y]): Option[Y]

    Produce a value that starts at the minimum (if it exists) and increments through a state value with the given binding function.

    Produce a value that starts at the minimum (if it exists) and increments through a state value with the given binding function. This is useful to implement incremental looping.

    f

    The function to execute on each spin of the state value.

    k

    The binding function.

  51. def succStateZero[X, Y](f: (F) ⇒ X, k: (X) ⇒ Y)(implicit m: Monoid[F]): Y

    Produce a value that starts at zero (Monoid.zero) and increments through a state value with the given mapping function.

    Produce a value that starts at zero (Monoid.zero) and increments through a state value with the given mapping function. This is useful to implement incremental looping.

    f

    The function to execute on each spin of the state value.

    k

    The mapping function.

    m

    The implementation of the zero function from which to start.

  52. def succStateZeroM[X, Y](f: (F) ⇒ X, k: (X) ⇒ State[F, Y])(implicit m: Monoid[F]): Y

    Produce a value that starts at zero (Monoid.zero) and increments through a state value with the given binding function.

    Produce a value that starts at zero (Monoid.zero) and increments through a state value with the given binding function. This is useful to implement incremental looping.

    f

    The function to execute on each spin of the state value.

    k

    The binding function.

    m

    The implementation of the zero function from which to start.

  53. def succn(n: Int, a: F): F
  54. def succx: Kleisli[Option, F, F]

    Moves to the successor, unless at the maximum.

  55. final def synchronized[T0](arg0: ⇒ T0): T0
    Definition Classes
    AnyRef
  56. def toScalaOrdering: scala.math.Ordering[F]

    Definition Classes
    Order
    Note

    Order.fromScalaOrdering(toScalaOrdering).order(x, y)

    this.order(x, y)

  57. def toString(): String
    Definition Classes
    AnyRef → Any
  58. final def wait(): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws(classOf[java.lang.InterruptedException])
  59. final def wait(arg0: Long, arg1: Int): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws(classOf[java.lang.InterruptedException])
  60. final def wait(arg0: Long): Unit
    Definition Classes
    AnyRef
    Annotations
    @native() @throws(classOf[java.lang.InterruptedException])

Inherited from Order[F]

Inherited from Equal[F]

Inherited from AnyRef

Inherited from Any

Ungrouped