Packages

trait MonadPlus[F[_]] extends Monad[F] with ApplicativePlus[F] with MonadPlusParent[F]

Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. MonadPlus
  2. MonadPlusParent
  3. ApplicativePlus
  4. PlusEmpty
  5. Plus
  6. Monad
  7. Bind
  8. BindParent
  9. Applicative
  10. ApplicativeParent
  11. Apply
  12. ApplyParent
  13. Functor
  14. InvariantFunctor
  15. AnyRef
  16. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Type Members

  1. trait ApplicativeLaw extends ApplyLaw
    Definition Classes
    Applicative
  2. trait ApplyLaw extends FunctorLaw
    Definition Classes
    Apply
  3. trait BindLaw extends ApplyLaw
    Definition Classes
    Bind
  4. trait FunctorLaw extends InvariantFunctorLaw
    Definition Classes
    Functor
  5. trait InvariantFunctorLaw extends AnyRef
    Definition Classes
    InvariantFunctor
  6. trait MonadLaw extends ApplicativeLaw with BindLaw
    Definition Classes
    Monad
  7. trait MonadPlusLaw extends EmptyLaw with MonadLaw
  8. trait StrongMonadPlusLaw extends MonadPlusLaw
  9. trait PlusLaw extends AnyRef
    Definition Classes
    Plus
  10. trait EmptyLaw extends PlusLaw
    Definition Classes
    PlusEmpty

Abstract Value Members

  1. abstract def bind[A, B](fa: F[A])(f: (A) ⇒ F[B]): F[B]

    Equivalent to join(map(fa)(f)).

    Equivalent to join(map(fa)(f)).

    Definition Classes
    Bind
  2. abstract def empty[A]: F[A]
    Definition Classes
    PlusEmpty
  3. abstract def plus[A](a: F[A], b: ⇒ F[A]): F[A]
    Definition Classes
    Plus
  4. abstract def point[A](a: ⇒ A): F[A]
    Definition Classes
    Applicative

Concrete Value Members

  1. final def !=(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  4. def ap[A, B](fa: ⇒ F[A])(f: ⇒ F[(A) ⇒ B]): F[B]

    Sequence f, then fa, combining their results by function application.

    Sequence f, then fa, combining their results by function application.

    NB: with respect to apply2 and all other combinators, as well as scalaz.Bind, the f action appears to the *left*. So f should be the "first" F-action to perform. This is in accordance with all other implementations of this typeclass in common use, which are "function first".

    Definition Classes
    BindApply
  5. def ap2[A, B, C](fa: ⇒ F[A], fb: ⇒ F[B])(f: F[(A, B) ⇒ C]): F[C]
    Definition Classes
    Apply
  6. def ap3[A, B, C, D](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C])(f: F[(A, B, C) ⇒ D]): F[D]
    Definition Classes
    Apply
  7. def ap4[A, B, C, D, E](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D])(f: F[(A, B, C, D) ⇒ E]): F[E]
    Definition Classes
    Apply
  8. def ap5[A, B, C, D, E, R](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D], fe: ⇒ F[E])(f: F[(A, B, C, D, E) ⇒ R]): F[R]
    Definition Classes
    Apply
  9. def ap6[A, B, C, D, E, FF, R](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D], fe: ⇒ F[E], ff: ⇒ F[FF])(f: F[(A, B, C, D, E, FF) ⇒ R]): F[R]
    Definition Classes
    Apply
  10. def ap7[A, B, C, D, E, FF, G, R](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D], fe: ⇒ F[E], ff: ⇒ F[FF], fg: ⇒ F[G])(f: F[(A, B, C, D, E, FF, G) ⇒ R]): F[R]
    Definition Classes
    Apply
  11. def ap8[A, B, C, D, E, FF, G, H, R](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D], fe: ⇒ F[E], ff: ⇒ F[FF], fg: ⇒ F[G], fh: ⇒ F[H])(f: F[(A, B, C, D, E, FF, G, H) ⇒ R]): F[R]
    Definition Classes
    Apply
  12. def apF[A, B](f: ⇒ F[(A) ⇒ B]): (F[A]) ⇒ F[B]

    Flipped variant of ap.

    Flipped variant of ap.

    Definition Classes
    Apply
  13. def applicativeLaw: ApplicativeLaw
    Definition Classes
    Applicative
  14. val applicativePlusSyntax: ApplicativePlusSyntax[F]
    Definition Classes
    ApplicativePlus
  15. val applicativeSyntax: ApplicativeSyntax[F]
    Definition Classes
    Applicative
  16. def apply[A, B](fa: F[A])(f: (A) ⇒ B): F[B]

    Alias for map.

    Alias for map.

    Definition Classes
    Functor
  17. def apply10[A, B, C, D, E, FF, G, H, I, J, R](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D], fe: ⇒ F[E], ff: ⇒ F[FF], fg: ⇒ F[G], fh: ⇒ F[H], fi: ⇒ F[I], fj: ⇒ F[J])(f: (A, B, C, D, E, FF, G, H, I, J) ⇒ R): F[R]
    Definition Classes
    Apply
  18. def apply11[A, B, C, D, E, FF, G, H, I, J, K, R](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D], fe: ⇒ F[E], ff: ⇒ F[FF], fg: ⇒ F[G], fh: ⇒ F[H], fi: ⇒ F[I], fj: ⇒ F[J], fk: ⇒ F[K])(f: (A, B, C, D, E, FF, G, H, I, J, K) ⇒ R): F[R]
    Definition Classes
    Apply
  19. def apply12[A, B, C, D, E, FF, G, H, I, J, K, L, R](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D], fe: ⇒ F[E], ff: ⇒ F[FF], fg: ⇒ F[G], fh: ⇒ F[H], fi: ⇒ F[I], fj: ⇒ F[J], fk: ⇒ F[K], fl: ⇒ F[L])(f: (A, B, C, D, E, FF, G, H, I, J, K, L) ⇒ R): F[R]
    Definition Classes
    Apply
  20. def apply2[A, B, C](fa: ⇒ F[A], fb: ⇒ F[B])(f: (A, B) ⇒ C): F[C]
    Definition Classes
    ApplicativeApply
  21. def apply3[A, B, C, D](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C])(f: (A, B, C) ⇒ D): F[D]
    Definition Classes
    Apply
  22. def apply4[A, B, C, D, E](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D])(f: (A, B, C, D) ⇒ E): F[E]
    Definition Classes
    Apply
  23. def apply5[A, B, C, D, E, R](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D], fe: ⇒ F[E])(f: (A, B, C, D, E) ⇒ R): F[R]
    Definition Classes
    Apply
  24. def apply6[A, B, C, D, E, FF, R](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D], fe: ⇒ F[E], ff: ⇒ F[FF])(f: (A, B, C, D, E, FF) ⇒ R): F[R]
    Definition Classes
    Apply
  25. def apply7[A, B, C, D, E, FF, G, R](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D], fe: ⇒ F[E], ff: ⇒ F[FF], fg: ⇒ F[G])(f: (A, B, C, D, E, FF, G) ⇒ R): F[R]
    Definition Classes
    Apply
  26. def apply8[A, B, C, D, E, FF, G, H, R](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D], fe: ⇒ F[E], ff: ⇒ F[FF], fg: ⇒ F[G], fh: ⇒ F[H])(f: (A, B, C, D, E, FF, G, H) ⇒ R): F[R]
    Definition Classes
    Apply
  27. def apply9[A, B, C, D, E, FF, G, H, I, R](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D], fe: ⇒ F[E], ff: ⇒ F[FF], fg: ⇒ F[G], fh: ⇒ F[H], fi: ⇒ F[I])(f: (A, B, C, D, E, FF, G, H, I) ⇒ R): F[R]
    Definition Classes
    Apply
  28. def applyApplicative: Applicative[[α]\/[F[α], α]]

    Add a unit to any Apply to form an Applicative.

    Add a unit to any Apply to form an Applicative.

    Definition Classes
    Apply
  29. def applyLaw: ApplyLaw
    Definition Classes
    Apply
  30. val applySyntax: ApplySyntax[F]
    Definition Classes
    Apply
  31. final def asInstanceOf[T0]: T0
    Definition Classes
    Any
  32. def bicompose[G[_, _]](implicit arg0: Bifunctor[G]): Bifunctor[[α, β]F[G[α, β]]]

    The composition of Functor F and Bifunctor G, [x, y]F[G[x, y]], is a Bifunctor

    The composition of Functor F and Bifunctor G, [x, y]F[G[x, y]], is a Bifunctor

    Definition Classes
    Functor
  33. def bindLaw: BindLaw
    Definition Classes
    Bind
  34. val bindSyntax: BindSyntax[F]
    Definition Classes
    Bind
  35. def clone(): AnyRef
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @native() @throws(classOf[java.lang.CloneNotSupportedException])
  36. def compose[G[_]](implicit G0: Applicative[G]): ApplicativePlus[[α]F[G[α]]]

    The composition of ApplicativePlus F and Applicative G, [x]F[G[x]], is a ApplicativePlus

    The composition of ApplicativePlus F and Applicative G, [x]F[G[x]], is a ApplicativePlus

    Definition Classes
    ApplicativePlusApplicative
  37. def compose[G[_]]: PlusEmpty[[α]F[G[α]]]

    The composition of PlusEmpty F and G, [x]F[G[x]], is a PlusEmpty

    The composition of PlusEmpty F and G, [x]F[G[x]], is a PlusEmpty

    Definition Classes
    PlusEmptyPlus
  38. def compose[G[_]](implicit G0: Apply[G]): Apply[[α]F[G[α]]]

    The composition of Applys F and G, [x]F[G[x]], is a Apply

    The composition of Applys F and G, [x]F[G[x]], is a Apply

    Definition Classes
    Apply
  39. def compose[G[_]](implicit G0: Functor[G]): Functor[[α]F[G[α]]]

    The composition of Functors F and G, [x]F[G[x]], is a Functor

    The composition of Functors F and G, [x]F[G[x]], is a Functor

    Definition Classes
    Functor
  40. def counzip[A, B](a: \/[F[A], F[B]]): F[\/[A, B]]
    Definition Classes
    Functor
  41. def discardLeft[A, B](fa: ⇒ F[A], fb: ⇒ F[B]): F[B]

    Combine fa and fb according to Apply[F] with a function that discards the A(s)

    Combine fa and fb according to Apply[F] with a function that discards the A(s)

    Definition Classes
    ApplyParent
  42. def discardRight[A, B](fa: ⇒ F[A], fb: ⇒ F[B]): F[A]

    Combine fa and fb according to Apply[F] with a function that discards the B(s)

    Combine fa and fb according to Apply[F] with a function that discards the B(s)

    Definition Classes
    ApplyParent
  43. final def eq(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  44. def equals(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  45. def filter[A](fa: F[A])(f: (A) ⇒ Boolean): F[A]

    Remove f-failing As in fa, by which we mean: in the expression filter(filter(fa)(f))(g), g will never be invoked for any a where f(a) returns false.

  46. def filterM[A](l: List[A])(f: (A) ⇒ F[Boolean]): F[List[A]]

    Filter l according to an applicative predicate.

    Filter l according to an applicative predicate.

    Definition Classes
    Applicative
  47. def finalize(): Unit
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws(classOf[java.lang.Throwable])
  48. def flip: Applicative[F]

    An Applicative for F in which effects happen in the opposite order.

    An Applicative for F in which effects happen in the opposite order.

    Definition Classes
    ApplicativeApplyParent
  49. def forever[A, B](fa: F[A]): F[B]

    Repeats a monadic action infinitely

    Repeats a monadic action infinitely

    Definition Classes
    BindApplyParent
  50. def fpair[A](fa: F[A]): F[(A, A)]

    Twin all As in fa.

    Twin all As in fa.

    Definition Classes
    Functor
  51. def fproduct[A, B](fa: F[A])(f: (A) ⇒ B): F[(A, B)]

    Pair all As in fa with the result of function application.

    Pair all As in fa with the result of function application.

    Definition Classes
    Functor
  52. def functorLaw: FunctorLaw
    Definition Classes
    Functor
  53. val functorSyntax: FunctorSyntax[F]
    Definition Classes
    Functor
  54. final def getClass(): Class[_]
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  55. def hashCode(): Int
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  56. def icompose[G[_]](implicit G0: Contravariant[G]): Contravariant[[α]F[G[α]]]

    The composition of Functor F and Contravariant G, [x]F[G[x]], is contravariant.

    The composition of Functor F and Contravariant G, [x]F[G[x]], is contravariant.

    Definition Classes
    Functor
  57. def ifM[B](value: F[Boolean], ifTrue: ⇒ F[B], ifFalse: ⇒ F[B]): F[B]

    if lifted into a binding.

    if lifted into a binding. Unlike lift3((t,c,a)=>if(t)c else a), this will only include context from the chosen of ifTrue and ifFalse, not the other.

    Definition Classes
    Bind
  58. def invariantFunctorLaw: InvariantFunctorLaw
    Definition Classes
    InvariantFunctor
  59. val invariantFunctorSyntax: InvariantFunctorSyntax[F]
    Definition Classes
    InvariantFunctor
  60. final def isInstanceOf[T0]: Boolean
    Definition Classes
    Any
  61. def iterateUntil[A](f: F[A])(p: (A) ⇒ Boolean): F[A]

    Execute an action repeatedly until its result satisfies the given predicate and return that result, discarding all others.

    Execute an action repeatedly until its result satisfies the given predicate and return that result, discarding all others.

    Definition Classes
    Monad
  62. def iterateWhile[A](f: F[A])(p: (A) ⇒ Boolean): F[A]

    Execute an action repeatedly until its result fails to satisfy the given predicate and return that result, discarding all others.

    Execute an action repeatedly until its result fails to satisfy the given predicate and return that result, discarding all others.

    Definition Classes
    Monad
  63. def join[A](ffa: F[F[A]]): F[A]

    Sequence the inner F of FFA after the outer F, forming a single F[A].

    Sequence the inner F of FFA after the outer F, forming a single F[A].

    Definition Classes
    Bind
  64. def lefts[G[_, _], A, B](value: F[G[A, B]])(implicit G: Bifoldable[G]): F[A]

    Generalized version of Haskell's lefts

    Generalized version of Haskell's lefts

    Definition Classes
    MonadPlusParent
  65. def lift[A, B](f: (A) ⇒ B): (F[A]) ⇒ F[B]

    Lift f into F.

    Lift f into F.

    Definition Classes
    Functor
  66. def lift10[A, B, C, D, E, FF, G, H, I, J, R](f: (A, B, C, D, E, FF, G, H, I, J) ⇒ R): (F[A], F[B], F[C], F[D], F[E], F[FF], F[G], F[H], F[I], F[J]) ⇒ F[R]
    Definition Classes
    Apply
  67. def lift11[A, B, C, D, E, FF, G, H, I, J, K, R](f: (A, B, C, D, E, FF, G, H, I, J, K) ⇒ R): (F[A], F[B], F[C], F[D], F[E], F[FF], F[G], F[H], F[I], F[J], F[K]) ⇒ F[R]
    Definition Classes
    Apply
  68. def lift12[A, B, C, D, E, FF, G, H, I, J, K, L, R](f: (A, B, C, D, E, FF, G, H, I, J, K, L) ⇒ R): (F[A], F[B], F[C], F[D], F[E], F[FF], F[G], F[H], F[I], F[J], F[K], F[L]) ⇒ F[R]
    Definition Classes
    Apply
  69. def lift2[A, B, C](f: (A, B) ⇒ C): (F[A], F[B]) ⇒ F[C]
    Definition Classes
    Apply
  70. def lift3[A, B, C, D](f: (A, B, C) ⇒ D): (F[A], F[B], F[C]) ⇒ F[D]
    Definition Classes
    Apply
  71. def lift4[A, B, C, D, E](f: (A, B, C, D) ⇒ E): (F[A], F[B], F[C], F[D]) ⇒ F[E]
    Definition Classes
    Apply
  72. def lift5[A, B, C, D, E, R](f: (A, B, C, D, E) ⇒ R): (F[A], F[B], F[C], F[D], F[E]) ⇒ F[R]
    Definition Classes
    Apply
  73. def lift6[A, B, C, D, E, FF, R](f: (A, B, C, D, E, FF) ⇒ R): (F[A], F[B], F[C], F[D], F[E], F[FF]) ⇒ F[R]
    Definition Classes
    Apply
  74. def lift7[A, B, C, D, E, FF, G, R](f: (A, B, C, D, E, FF, G) ⇒ R): (F[A], F[B], F[C], F[D], F[E], F[FF], F[G]) ⇒ F[R]
    Definition Classes
    Apply
  75. def lift8[A, B, C, D, E, FF, G, H, R](f: (A, B, C, D, E, FF, G, H) ⇒ R): (F[A], F[B], F[C], F[D], F[E], F[FF], F[G], F[H]) ⇒ F[R]
    Definition Classes
    Apply
  76. def lift9[A, B, C, D, E, FF, G, H, I, R](f: (A, B, C, D, E, FF, G, H, I) ⇒ R): (F[A], F[B], F[C], F[D], F[E], F[FF], F[G], F[H], F[I]) ⇒ F[R]
    Definition Classes
    Apply
  77. def many[A](a: F[A]): F[List[A]]

    A list of results acquired by repeating a.

    A list of results acquired by repeating a. Never empty; initial failure is an empty list instead.

    Definition Classes
    ApplicativePlus
  78. def map[A, B](fa: F[A])(f: (A) ⇒ B): F[B]

    Lift f into F and apply to F[A].

    Lift f into F and apply to F[A].

    Definition Classes
    MonadApplicativeFunctor
  79. def mapply[A, B](a: A)(f: F[(A) ⇒ B]): F[B]

    Lift apply(a), and apply the result to f.

    Lift apply(a), and apply the result to f.

    Definition Classes
    Functor
  80. def monadLaw: MonadLaw
    Definition Classes
    Monad
  81. def monadPlusLaw: MonadPlusLaw
  82. val monadPlusSyntax: MonadPlusSyntax[F]
  83. val monadSyntax: MonadSyntax[F]
    Definition Classes
    Monad
  84. def monoid[A]: Monoid[F[A]]
    Definition Classes
    PlusEmpty
  85. def mproduct[A, B](fa: F[A])(f: (A) ⇒ F[B]): F[(A, B)]

    Pair A with the result of function application.

    Pair A with the result of function application.

    Definition Classes
    Bind
  86. final def ne(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  87. final def notify(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  88. final def notifyAll(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  89. def par: Par[F]

    A lawful implementation of this that is isomorphic up to the methods defined on Applicative allowing for optimised parallel implementations that would otherwise violate laws of more specific typeclasses (e.g.

    A lawful implementation of this that is isomorphic up to the methods defined on Applicative allowing for optimised parallel implementations that would otherwise violate laws of more specific typeclasses (e.g. Monad).

    Definition Classes
    ApplicativeParent
  90. def plusEmptyLaw: EmptyLaw
    Definition Classes
    PlusEmpty
  91. val plusEmptySyntax: PlusEmptySyntax[F]
    Definition Classes
    PlusEmpty
  92. def plusLaw: PlusLaw
    Definition Classes
    Plus
  93. val plusSyntax: PlusSyntax[F]
    Definition Classes
    Plus
  94. def product[G[_]](implicit G0: MonadPlus[G]): MonadPlus[[α](F[α], G[α])]

    The product of MonadPlus F and G, [x](F[x], G[x]]), is a MonadPlus

  95. def product[G[_]](implicit G0: ApplicativePlus[G]): ApplicativePlus[[α](F[α], G[α])]

    The product of ApplicativePlus F and G, [x](F[x], G[x]]), is a ApplicativePlus

    The product of ApplicativePlus F and G, [x](F[x], G[x]]), is a ApplicativePlus

    Definition Classes
    ApplicativePlus
  96. def product[G[_]](implicit G0: PlusEmpty[G]): PlusEmpty[[α](F[α], G[α])]

    The product of PlusEmpty F and G, [x](F[x], G[x]]), is a PlusEmpty

    The product of PlusEmpty F and G, [x](F[x], G[x]]), is a PlusEmpty

    Definition Classes
    PlusEmpty
  97. def product[G[_]](implicit G0: Plus[G]): Plus[[α](F[α], G[α])]

    The product of Plus F and G, [x](F[x], G[x]]), is a Plus

    The product of Plus F and G, [x](F[x], G[x]]), is a Plus

    Definition Classes
    Plus
  98. def product[G[_]](implicit G0: Monad[G]): Monad[[α](F[α], G[α])]

    The product of Monad F and G, [x](F[x], G[x]]), is a Monad

    The product of Monad F and G, [x](F[x], G[x]]), is a Monad

    Definition Classes
    Monad
  99. def product[G[_]](implicit G0: Bind[G]): Bind[[α](F[α], G[α])]

    The product of Bind F and G, [x](F[x], G[x]]), is a Bind

    The product of Bind F and G, [x](F[x], G[x]]), is a Bind

    Definition Classes
    Bind
  100. def product[G[_]](implicit G0: Applicative[G]): Applicative[[α](F[α], G[α])]

    The product of Applicatives F and G, [x](F[x], G[x]]), is an Applicative

    The product of Applicatives F and G, [x](F[x], G[x]]), is an Applicative

    Definition Classes
    Applicative
  101. def product[G[_]](implicit G0: Apply[G]): Apply[[α](F[α], G[α])]

    The product of Applys F and G, [x](F[x], G[x]]), is a Apply

    The product of Applys F and G, [x](F[x], G[x]]), is a Apply

    Definition Classes
    Apply
  102. def product[G[_]](implicit G0: Functor[G]): Functor[[α](F[α], G[α])]

    The product of Functors F and G, [x](F[x], G[x]]), is a Functor

    The product of Functors F and G, [x](F[x], G[x]]), is a Functor

    Definition Classes
    Functor
  103. final def pure[A](a: ⇒ A): F[A]
    Definition Classes
    Applicative
  104. def replicateM[A](n: Int, fa: F[A]): F[List[A]]

    Performs the action n times, returning the list of results.

    Performs the action n times, returning the list of results.

    Definition Classes
    Applicative
  105. def replicateM_[A](n: Int, fa: F[A]): F[Unit]

    Performs the action n times, returning nothing.

    Performs the action n times, returning nothing.

    Definition Classes
    Applicative
  106. def rights[G[_, _], A, B](value: F[G[A, B]])(implicit G: Bifoldable[G]): F[B]

    Generalized version of Haskell's rights

    Generalized version of Haskell's rights

    Definition Classes
    MonadPlusParent
  107. def semigroup[A]: Semigroup[F[A]]
    Definition Classes
    Plus
  108. def separate[G[_, _], A, B](value: F[G[A, B]])(implicit G: Bifoldable[G]): (F[A], F[B])

    Generalized version of Haskell's partitionEithers

  109. def sequence[A, G[_]](as: G[F[A]])(implicit arg0: Traverse[G]): F[G[A]]
    Definition Classes
    Applicative
  110. def sequence1[A, G[_]](as: G[F[A]])(implicit arg0: Traverse1[G]): F[G[A]]
    Definition Classes
    Apply
  111. def some[A](a: F[A]): F[List[A]]

    empty or a non-empty list of results acquired by repeating a.

    empty or a non-empty list of results acquired by repeating a.

    Definition Classes
    ApplicativePlus
  112. def strengthL[A, B](a: A, f: F[B]): F[(A, B)]

    Inject a to the left of Bs in f.

    Inject a to the left of Bs in f.

    Definition Classes
    Functor
  113. def strengthR[A, B](f: F[A], b: B): F[(A, B)]

    Inject b to the right of As in f.

    Inject b to the right of As in f.

    Definition Classes
    Functor
  114. def strongMonadPlusLaw: StrongMonadPlusLaw
  115. final def synchronized[T0](arg0: ⇒ T0): T0
    Definition Classes
    AnyRef
  116. def toString(): String
    Definition Classes
    AnyRef → Any
  117. def traverse[A, G[_], B](value: G[A])(f: (A) ⇒ F[B])(implicit G: Traverse[G]): F[G[B]]
    Definition Classes
    Applicative
  118. def traverse1[A, G[_], B](value: G[A])(f: (A) ⇒ F[B])(implicit G: Traverse1[G]): F[G[B]]
    Definition Classes
    Apply
  119. def tuple2[A, B](fa: ⇒ F[A], fb: ⇒ F[B]): F[(A, B)]
    Definition Classes
    Apply
  120. def tuple3[A, B, C](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C]): F[(A, B, C)]
    Definition Classes
    Apply
  121. def tuple4[A, B, C, D](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D]): F[(A, B, C, D)]
    Definition Classes
    Apply
  122. def tuple5[A, B, C, D, E](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D], fe: ⇒ F[E]): F[(A, B, C, D, E)]
    Definition Classes
    Apply
  123. def unite[T[_], A](value: F[T[A]])(implicit T: Foldable[T]): F[A]

    Generalized version of Haskell's catMaybes

  124. final def uniteU[T](value: F[T])(implicit T: Unapply[Foldable, T]): F[A]

    A version of unite that infers the type constructor T.

  125. def unlessM[A](cond: Boolean)(f: ⇒ F[A]): F[Unit]

    Returns the given argument if cond is false, otherwise, unit lifted into F.

    Returns the given argument if cond is false, otherwise, unit lifted into F.

    Definition Classes
    Applicative
  126. def untilM[G[_], A](f: F[A], cond: ⇒ F[Boolean])(implicit G: MonadPlus[G]): F[G[A]]

    Execute an action repeatedly until the Boolean condition returns true.

    Execute an action repeatedly until the Boolean condition returns true. The condition is evaluated after the loop body. Collects results into an arbitrary MonadPlus value, such as a List.

    Definition Classes
    Monad
  127. def untilM_[A](f: F[A], cond: ⇒ F[Boolean]): F[Unit]

    Execute an action repeatedly until the Boolean condition returns true.

    Execute an action repeatedly until the Boolean condition returns true. The condition is evaluated after the loop body. Discards results.

    Definition Classes
    Monad
  128. def void[A](fa: F[A]): F[Unit]

    Empty fa of meaningful pure values, preserving its structure.

    Empty fa of meaningful pure values, preserving its structure.

    Definition Classes
    Functor
  129. final def wait(): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws(classOf[java.lang.InterruptedException])
  130. final def wait(arg0: Long, arg1: Int): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws(classOf[java.lang.InterruptedException])
  131. final def wait(arg0: Long): Unit
    Definition Classes
    AnyRef
    Annotations
    @native() @throws(classOf[java.lang.InterruptedException])
  132. def whenM[A](cond: Boolean)(f: ⇒ F[A]): F[Unit]

    Returns the given argument if cond is true, otherwise, unit lifted into F.

    Returns the given argument if cond is true, otherwise, unit lifted into F.

    Definition Classes
    Applicative
  133. def whileM[G[_], A](p: F[Boolean], body: ⇒ F[A])(implicit G: MonadPlus[G]): F[G[A]]

    Execute an action repeatedly as long as the given Boolean expression returns true.

    Execute an action repeatedly as long as the given Boolean expression returns true. The condition is evalated before the loop body. Collects the results into an arbitrary MonadPlus value, such as a List.

    Definition Classes
    Monad
  134. def whileM_[A](p: F[Boolean], body: ⇒ F[A]): F[Unit]

    Execute an action repeatedly as long as the given Boolean expression returns true.

    Execute an action repeatedly as long as the given Boolean expression returns true. The condition is evaluated before the loop body. Discards results.

    Definition Classes
    Monad
  135. def widen[A, B](fa: F[A])(implicit ev: <~<[A, B]): F[B]

    Functors are covariant by nature, so we can treat an F[A] as an F[B] if A is a subtype of B.

    Functors are covariant by nature, so we can treat an F[A] as an F[B] if A is a subtype of B.

    Definition Classes
    Functor
  136. def xmap[A, B](fa: F[A], f: (A) ⇒ B, g: (B) ⇒ A): F[B]

    Converts ma to a value of type F[B] using the provided functions f and g.

    Converts ma to a value of type F[B] using the provided functions f and g.

    Definition Classes
    FunctorInvariantFunctor
  137. def xmapb[A, B](ma: F[A])(b: Bijection[A, B]): F[B]

    Converts ma to a value of type F[B] using the provided bijection.

    Converts ma to a value of type F[B] using the provided bijection.

    Definition Classes
    InvariantFunctor
  138. def xmapi[A, B](ma: F[A])(iso: Isomorphism.<=>[A, B]): F[B]

    Converts ma to a value of type F[B] using the provided isomorphism.

    Converts ma to a value of type F[B] using the provided isomorphism.

    Definition Classes
    InvariantFunctor

Inherited from MonadPlusParent[F]

Inherited from ApplicativePlus[F]

Inherited from PlusEmpty[F]

Inherited from Plus[F]

Inherited from Monad[F]

Inherited from Bind[F]

Inherited from BindParent[F]

Inherited from Applicative[F]

Inherited from ApplicativeParent[F]

Inherited from Apply[F]

Inherited from ApplyParent[F]

Inherited from Functor[F]

Inherited from InvariantFunctor[F]

Inherited from AnyRef

Inherited from Any

Ungrouped