Packages

t

scalaz

IsomorphismBindRec

trait IsomorphismBindRec[F[_], G[_]] extends BindRec[F] with IsomorphismBind[F, G]

Source
Isomorphism.scala
Linear Supertypes
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. IsomorphismBindRec
  2. IsomorphismBind
  3. IsomorphismApply
  4. IsomorphismFunctor
  5. BindRec
  6. Bind
  7. Apply
  8. Functor
  9. InvariantFunctor
  10. AnyRef
  11. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Type Members

  1. trait ApplyLaw extends FunctorLaw
    Definition Classes
    Apply
  2. trait FlippedApply extends Apply[F]
    Attributes
    protected[this]
    Definition Classes
    Apply
  3. trait BindLaw extends ApplyLaw
    Definition Classes
    Bind
  4. trait BindRecLaw extends BindLaw
    Definition Classes
    BindRec
  5. trait FunctorLaw extends InvariantFunctorLaw
    Definition Classes
    Functor
  6. trait InvariantFunctorLaw extends AnyRef
    Definition Classes
    InvariantFunctor

Abstract Value Members

  1. implicit abstract def G: BindRec[G]
  2. abstract def iso: Isomorphism.<~>[F, G]
    Definition Classes
    IsomorphismFunctor

Concrete Value Members

  1. final def !=(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  4. def ap[A, B](fa: ⇒ F[A])(f: ⇒ F[(A) ⇒ B]): F[B]

    Sequence f, then fa, combining their results by function application.

    Sequence f, then fa, combining their results by function application.

    NB: with respect to apply2 and all other combinators, as well as scalaz.Bind, the f action appears to the *left*. So f should be the "first" F-action to perform. This is in accordance with all other implementations of this typeclass in common use, which are "function first".

    Definition Classes
    IsomorphismApplyApply
  5. def ap2[A, B, C](fa: ⇒ F[A], fb: ⇒ F[B])(f: F[(A, B) ⇒ C]): F[C]
    Definition Classes
    Apply
  6. def ap3[A, B, C, D](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C])(f: F[(A, B, C) ⇒ D]): F[D]
    Definition Classes
    Apply
  7. def ap4[A, B, C, D, E](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D])(f: F[(A, B, C, D) ⇒ E]): F[E]
    Definition Classes
    Apply
  8. def ap5[A, B, C, D, E, R](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D], fe: ⇒ F[E])(f: F[(A, B, C, D, E) ⇒ R]): F[R]
    Definition Classes
    Apply
  9. def ap6[A, B, C, D, E, FF, R](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D], fe: ⇒ F[E], ff: ⇒ F[FF])(f: F[(A, B, C, D, E, FF) ⇒ R]): F[R]
    Definition Classes
    Apply
  10. def ap7[A, B, C, D, E, FF, G, R](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D], fe: ⇒ F[E], ff: ⇒ F[FF], fg: ⇒ F[G])(f: F[(A, B, C, D, E, FF, G) ⇒ R]): F[R]
    Definition Classes
    Apply
  11. def ap8[A, B, C, D, E, FF, G, H, R](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D], fe: ⇒ F[E], ff: ⇒ F[FF], fg: ⇒ F[G], fh: ⇒ F[H])(f: F[(A, B, C, D, E, FF, G, H) ⇒ R]): F[R]
    Definition Classes
    Apply
  12. def apF[A, B](f: ⇒ F[(A) ⇒ B]): (F[A]) ⇒ F[B]

    Flipped variant of ap.

    Flipped variant of ap.

    Definition Classes
    Apply
  13. def apply[A, B](fa: F[A])(f: (A) ⇒ B): F[B]

    Alias for map.

    Alias for map.

    Definition Classes
    Functor
  14. def apply10[A, B, C, D, E, FF, G, H, I, J, R](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D], fe: ⇒ F[E], ff: ⇒ F[FF], fg: ⇒ F[G], fh: ⇒ F[H], fi: ⇒ F[I], fj: ⇒ F[J])(f: (A, B, C, D, E, FF, G, H, I, J) ⇒ R): F[R]
    Definition Classes
    Apply
  15. def apply11[A, B, C, D, E, FF, G, H, I, J, K, R](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D], fe: ⇒ F[E], ff: ⇒ F[FF], fg: ⇒ F[G], fh: ⇒ F[H], fi: ⇒ F[I], fj: ⇒ F[J], fk: ⇒ F[K])(f: (A, B, C, D, E, FF, G, H, I, J, K) ⇒ R): F[R]
    Definition Classes
    Apply
  16. def apply12[A, B, C, D, E, FF, G, H, I, J, K, L, R](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D], fe: ⇒ F[E], ff: ⇒ F[FF], fg: ⇒ F[G], fh: ⇒ F[H], fi: ⇒ F[I], fj: ⇒ F[J], fk: ⇒ F[K], fl: ⇒ F[L])(f: (A, B, C, D, E, FF, G, H, I, J, K, L) ⇒ R): F[R]
    Definition Classes
    Apply
  17. def apply2[A, B, C](fa: ⇒ F[A], fb: ⇒ F[B])(f: (A, B) ⇒ C): F[C]
    Definition Classes
    Apply
  18. def apply3[A, B, C, D](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C])(f: (A, B, C) ⇒ D): F[D]
    Definition Classes
    Apply
  19. def apply4[A, B, C, D, E](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D])(f: (A, B, C, D) ⇒ E): F[E]
    Definition Classes
    Apply
  20. def apply5[A, B, C, D, E, R](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D], fe: ⇒ F[E])(f: (A, B, C, D, E) ⇒ R): F[R]
    Definition Classes
    Apply
  21. def apply6[A, B, C, D, E, FF, R](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D], fe: ⇒ F[E], ff: ⇒ F[FF])(f: (A, B, C, D, E, FF) ⇒ R): F[R]
    Definition Classes
    Apply
  22. def apply7[A, B, C, D, E, FF, G, R](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D], fe: ⇒ F[E], ff: ⇒ F[FF], fg: ⇒ F[G])(f: (A, B, C, D, E, FF, G) ⇒ R): F[R]
    Definition Classes
    Apply
  23. def apply8[A, B, C, D, E, FF, G, H, R](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D], fe: ⇒ F[E], ff: ⇒ F[FF], fg: ⇒ F[G], fh: ⇒ F[H])(f: (A, B, C, D, E, FF, G, H) ⇒ R): F[R]
    Definition Classes
    Apply
  24. def apply9[A, B, C, D, E, FF, G, H, I, R](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D], fe: ⇒ F[E], ff: ⇒ F[FF], fg: ⇒ F[G], fh: ⇒ F[H], fi: ⇒ F[I])(f: (A, B, C, D, E, FF, G, H, I) ⇒ R): F[R]
    Definition Classes
    Apply
  25. def applyApplicative: Applicative[[α]\/[F[α], α]]

    Add a unit to any Apply to form an Applicative.

    Add a unit to any Apply to form an Applicative.

    Definition Classes
    Apply
  26. def applyLaw: ApplyLaw
    Definition Classes
    Apply
  27. val applySyntax: ApplySyntax[F]
    Definition Classes
    Apply
  28. final def asInstanceOf[T0]: T0
    Definition Classes
    Any
  29. def bicompose[G[_, _]](implicit arg0: Bifunctor[G]): Bifunctor[[α, β]F[G[α, β]]]

    The composition of Functor F and Bifunctor G, [x, y]F[G[x, y]], is a Bifunctor

    The composition of Functor F and Bifunctor G, [x, y]F[G[x, y]], is a Bifunctor

    Definition Classes
    Functor
  30. def bind[A, B](fa: F[A])(f: (A) ⇒ F[B]): F[B]

    Equivalent to join(map(fa)(f)).

    Equivalent to join(map(fa)(f)).

    Definition Classes
    IsomorphismBindBind
  31. def bindLaw: BindLaw
    Definition Classes
    Bind
  32. def bindRecLaw: BindRecLaw
    Definition Classes
    BindRec
  33. val bindRecSyntax: BindRecSyntax[F]
    Definition Classes
    BindRec
  34. val bindSyntax: BindSyntax[F]
    Definition Classes
    Bind
  35. def clone(): AnyRef
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  36. def compose[G[_]](implicit G0: Apply[G]): Apply[[α]F[G[α]]]

    The composition of Applys F and G, [x]F[G[x]], is a Apply

    The composition of Applys F and G, [x]F[G[x]], is a Apply

    Definition Classes
    Apply
  37. def compose[G[_]](implicit G0: Functor[G]): Functor[[α]F[G[α]]]

    The composition of Functors F and G, [x]F[G[x]], is a Functor

    The composition of Functors F and G, [x]F[G[x]], is a Functor

    Definition Classes
    Functor
  38. def counzip[A, B](a: \/[F[A], F[B]]): F[\/[A, B]]
    Definition Classes
    Functor
  39. def discardLeft[A, B](fa: ⇒ F[A], fb: ⇒ F[B]): F[B]

    Combine fa and fb according to Apply[F] with a function that discards the A(s)

    Combine fa and fb according to Apply[F] with a function that discards the A(s)

    Definition Classes
    Apply
  40. def discardRight[A, B](fa: ⇒ F[A], fb: ⇒ F[B]): F[A]

    Combine fa and fb according to Apply[F] with a function that discards the B(s)

    Combine fa and fb according to Apply[F] with a function that discards the B(s)

    Definition Classes
    Apply
  41. final def eq(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  42. def equals(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  43. def finalize(): Unit
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  44. def flip: Apply[F]

    An Apply for F in which effects happen in the opposite order.

    An Apply for F in which effects happen in the opposite order.

    Definition Classes
    Apply
  45. def forever[A, B](fa: F[A]): F[B]

    Repeats an applicative action infinitely

    Repeats an applicative action infinitely

    Definition Classes
    BindRecApply
  46. def fpair[A](fa: F[A]): F[(A, A)]

    Twin all As in fa.

    Twin all As in fa.

    Definition Classes
    Functor
  47. def fproduct[A, B](fa: F[A])(f: (A) ⇒ B): F[(A, B)]

    Pair all As in fa with the result of function application.

    Pair all As in fa with the result of function application.

    Definition Classes
    Functor
  48. def functorLaw: FunctorLaw
    Definition Classes
    Functor
  49. val functorSyntax: FunctorSyntax[F]
    Definition Classes
    Functor
  50. final def getClass(): Class[_]
    Definition Classes
    AnyRef → Any
  51. def hashCode(): Int
    Definition Classes
    AnyRef → Any
  52. def icompose[G[_]](implicit G0: Contravariant[G]): Contravariant[[α]F[G[α]]]

    The composition of Functor F and Contravariant G, [x]F[G[x]], is contravariant.

    The composition of Functor F and Contravariant G, [x]F[G[x]], is contravariant.

    Definition Classes
    Functor
  53. def ifM[B](value: F[Boolean], ifTrue: ⇒ F[B], ifFalse: ⇒ F[B]): F[B]

    if lifted into a binding.

    if lifted into a binding. Unlike lift3((t,c,a)=>if(t)c else a), this will only include context from the chosen of ifTrue and ifFalse, not the other.

    Definition Classes
    Bind
  54. def invariantFunctorLaw: InvariantFunctorLaw
    Definition Classes
    InvariantFunctor
  55. val invariantFunctorSyntax: InvariantFunctorSyntax[F]
    Definition Classes
    InvariantFunctor
  56. final def isInstanceOf[T0]: Boolean
    Definition Classes
    Any
  57. def join[A](ffa: F[F[A]]): F[A]

    Sequence the inner F of FFA after the outer F, forming a single F[A].

    Sequence the inner F of FFA after the outer F, forming a single F[A].

    Definition Classes
    Bind
  58. def lift[A, B](f: (A) ⇒ B): (F[A]) ⇒ F[B]

    Lift f into F.

    Lift f into F.

    Definition Classes
    Functor
  59. def lift10[A, B, C, D, E, FF, G, H, I, J, R](f: (A, B, C, D, E, FF, G, H, I, J) ⇒ R): (F[A], F[B], F[C], F[D], F[E], F[FF], F[G], F[H], F[I], F[J]) ⇒ F[R]
    Definition Classes
    Apply
  60. def lift11[A, B, C, D, E, FF, G, H, I, J, K, R](f: (A, B, C, D, E, FF, G, H, I, J, K) ⇒ R): (F[A], F[B], F[C], F[D], F[E], F[FF], F[G], F[H], F[I], F[J], F[K]) ⇒ F[R]
    Definition Classes
    Apply
  61. def lift12[A, B, C, D, E, FF, G, H, I, J, K, L, R](f: (A, B, C, D, E, FF, G, H, I, J, K, L) ⇒ R): (F[A], F[B], F[C], F[D], F[E], F[FF], F[G], F[H], F[I], F[J], F[K], F[L]) ⇒ F[R]
    Definition Classes
    Apply
  62. def lift2[A, B, C](f: (A, B) ⇒ C): (F[A], F[B]) ⇒ F[C]
    Definition Classes
    Apply
  63. def lift3[A, B, C, D](f: (A, B, C) ⇒ D): (F[A], F[B], F[C]) ⇒ F[D]
    Definition Classes
    Apply
  64. def lift4[A, B, C, D, E](f: (A, B, C, D) ⇒ E): (F[A], F[B], F[C], F[D]) ⇒ F[E]
    Definition Classes
    Apply
  65. def lift5[A, B, C, D, E, R](f: (A, B, C, D, E) ⇒ R): (F[A], F[B], F[C], F[D], F[E]) ⇒ F[R]
    Definition Classes
    Apply
  66. def lift6[A, B, C, D, E, FF, R](f: (A, B, C, D, E, FF) ⇒ R): (F[A], F[B], F[C], F[D], F[E], F[FF]) ⇒ F[R]
    Definition Classes
    Apply
  67. def lift7[A, B, C, D, E, FF, G, R](f: (A, B, C, D, E, FF, G) ⇒ R): (F[A], F[B], F[C], F[D], F[E], F[FF], F[G]) ⇒ F[R]
    Definition Classes
    Apply
  68. def lift8[A, B, C, D, E, FF, G, H, R](f: (A, B, C, D, E, FF, G, H) ⇒ R): (F[A], F[B], F[C], F[D], F[E], F[FF], F[G], F[H]) ⇒ F[R]
    Definition Classes
    Apply
  69. def lift9[A, B, C, D, E, FF, G, H, I, R](f: (A, B, C, D, E, FF, G, H, I) ⇒ R): (F[A], F[B], F[C], F[D], F[E], F[FF], F[G], F[H], F[I]) ⇒ F[R]
    Definition Classes
    Apply
  70. def map[A, B](fa: F[A])(f: (A) ⇒ B): F[B]

    Lift f into F and apply to F[A].

    Lift f into F and apply to F[A].

    Definition Classes
    IsomorphismFunctorFunctor
  71. def mapply[A, B](a: A)(f: F[(A) ⇒ B]): F[B]

    Lift apply(a), and apply the result to f.

    Lift apply(a), and apply the result to f.

    Definition Classes
    Functor
  72. def mproduct[A, B](fa: F[A])(f: (A) ⇒ F[B]): F[(A, B)]

    Pair A with the result of function application.

    Pair A with the result of function application.

    Definition Classes
    Bind
  73. final def ne(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  74. final def notify(): Unit
    Definition Classes
    AnyRef
  75. final def notifyAll(): Unit
    Definition Classes
    AnyRef
  76. def product[G[_]](implicit G0: BindRec[G]): BindRec[[α](F[α], G[α])]

    The product of BindRec F and G, [x](F[x], G[x]]), is a BindRec

    The product of BindRec F and G, [x](F[x], G[x]]), is a BindRec

    Definition Classes
    BindRec
  77. def product[G[_]](implicit G0: Bind[G]): Bind[[α](F[α], G[α])]

    The product of Bind F and G, [x](F[x], G[x]]), is a Bind

    The product of Bind F and G, [x](F[x], G[x]]), is a Bind

    Definition Classes
    Bind
  78. def product[G[_]](implicit G0: Apply[G]): Apply[[α](F[α], G[α])]

    The product of Applys F and G, [x](F[x], G[x]]), is a Apply

    The product of Applys F and G, [x](F[x], G[x]]), is a Apply

    Definition Classes
    Apply
  79. def product[G[_]](implicit G0: Functor[G]): Functor[[α](F[α], G[α])]

    The product of Functors F and G, [x](F[x], G[x]]), is a Functor

    The product of Functors F and G, [x](F[x], G[x]]), is a Functor

    Definition Classes
    Functor
  80. def sequence1[A, G[_]](as: G[F[A]])(implicit arg0: Traverse1[G]): F[G[A]]
    Definition Classes
    Apply
  81. def strengthL[A, B](a: A, f: F[B]): F[(A, B)]

    Inject a to the left of Bs in f.

    Inject a to the left of Bs in f.

    Definition Classes
    Functor
  82. def strengthR[A, B](f: F[A], b: B): F[(A, B)]

    Inject b to the right of As in f.

    Inject b to the right of As in f.

    Definition Classes
    Functor
  83. final def synchronized[T0](arg0: ⇒ T0): T0
    Definition Classes
    AnyRef
  84. def tailrecM[A, B](a: A)(f: (A) ⇒ F[\/[A, B]]): F[B]
    Definition Classes
    IsomorphismBindRecBindRec
  85. def toString(): String
    Definition Classes
    AnyRef → Any
  86. def traverse1[A, G[_], B](value: G[A])(f: (A) ⇒ F[B])(implicit G: Traverse1[G]): F[G[B]]
    Definition Classes
    Apply
  87. def tuple2[A, B](fa: ⇒ F[A], fb: ⇒ F[B]): F[(A, B)]
    Definition Classes
    Apply
  88. def tuple3[A, B, C](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C]): F[(A, B, C)]
    Definition Classes
    Apply
  89. def tuple4[A, B, C, D](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D]): F[(A, B, C, D)]
    Definition Classes
    Apply
  90. def tuple5[A, B, C, D, E](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D], fe: ⇒ F[E]): F[(A, B, C, D, E)]
    Definition Classes
    Apply
  91. def void[A](fa: F[A]): F[Unit]

    Empty fa of meaningful pure values, preserving its structure.

    Empty fa of meaningful pure values, preserving its structure.

    Definition Classes
    Functor
  92. final def wait(): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  93. final def wait(arg0: Long, arg1: Int): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  94. final def wait(arg0: Long): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  95. def widen[A, B](fa: F[A])(implicit ev: <~<[A, B]): F[B]

    Functors are covariant by nature, so we can treat an F[A] as an F[B] if A is a subtype of B.

    Functors are covariant by nature, so we can treat an F[A] as an F[B] if A is a subtype of B.

    Definition Classes
    Functor
  96. def xmap[A, B](fa: F[A], f: (A) ⇒ B, g: (B) ⇒ A): F[B]

    Converts ma to a value of type F[B] using the provided functions f and g.

    Converts ma to a value of type F[B] using the provided functions f and g.

    Definition Classes
    FunctorInvariantFunctor
  97. def xmapb[A, B](ma: F[A])(b: Bijection[A, B]): F[B]

    Converts ma to a value of type F[B] using the provided bijection.

    Converts ma to a value of type F[B] using the provided bijection.

    Definition Classes
    InvariantFunctor
  98. def xmapi[A, B](ma: F[A])(iso: Isomorphism.<=>[A, B]): F[B]

    Converts ma to a value of type F[B] using the provided isomorphism.

    Converts ma to a value of type F[B] using the provided isomorphism.

    Definition Classes
    InvariantFunctor

Inherited from IsomorphismBind[F, G]

Inherited from IsomorphismApply[F, G]

Inherited from IsomorphismFunctor[F, G]

Inherited from BindRec[F]

Inherited from Bind[F]

Inherited from Apply[F]

Inherited from Functor[F]

Inherited from InvariantFunctor[F]

Inherited from AnyRef

Inherited from Any

Ungrouped