trait IsomorphismTraverse1[F[_], G[_]] extends Traverse1[F] with IsomorphismTraverse[F, G] with IsomorphismFoldable1[F, G]
- Source
- Isomorphism.scala
- Alphabetic
- By Inheritance
- IsomorphismTraverse1
- IsomorphismFoldable1
- IsomorphismTraverse
- IsomorphismFunctor
- IsomorphismFoldable
- Traverse1
- Foldable1
- Traverse
- Foldable
- Functor
- InvariantFunctor
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Type Members
-
trait
FoldableLaw
extends AnyRef
- Definition Classes
- Foldable
-
trait
Foldable1Law
extends FoldableLaw
- Definition Classes
- Foldable1
-
trait
FunctorLaw
extends InvariantFunctorLaw
- Definition Classes
- Functor
-
trait
InvariantFunctorLaw
extends AnyRef
- Definition Classes
- InvariantFunctor
-
class
Traversal
[G[_]] extends AnyRef
- Definition Classes
- Traverse
-
trait
TraverseLaw
extends FunctorLaw
- Definition Classes
- Traverse
-
trait
Traverse1Law
extends TraverseLaw
- Definition Classes
- Traverse1
Abstract Value Members
-
implicit abstract
def
G: Traverse1[G]
- Definition Classes
- IsomorphismTraverse1 → IsomorphismFoldable1 → IsomorphismTraverse → IsomorphismFunctor → IsomorphismFoldable
-
abstract
def
iso: Isomorphism.<~>[F, G]
- Definition Classes
- IsomorphismFunctor
Concrete Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
all[A](fa: F[A])(p: (A) ⇒ Boolean): Boolean
Whether all
A
s infa
yield true fromp
.Whether all
A
s infa
yield true fromp
.- Definition Classes
- Foldable
-
def
allM[G[_], A](fa: F[A])(p: (A) ⇒ G[Boolean])(implicit G: Monad[G]): G[Boolean]
all
with monadic traversal.all
with monadic traversal.- Definition Classes
- Foldable
-
def
any[A](fa: F[A])(p: (A) ⇒ Boolean): Boolean
Whether any
A
s infa
yield true fromp
.Whether any
A
s infa
yield true fromp
.- Definition Classes
- Foldable
-
def
anyM[G[_], A](fa: F[A])(p: (A) ⇒ G[Boolean])(implicit G: Monad[G]): G[Boolean]
any
with monadic traversal.any
with monadic traversal.- Definition Classes
- Foldable
-
def
apply[A, B](fa: F[A])(f: (A) ⇒ B): F[B]
Alias for
map
.Alias for
map
.- Definition Classes
- Functor
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
def
bicompose[G[_, _]](implicit arg0: Bitraverse[G]): Bitraverse[[α, β]F[G[α, β]]]
The composition of Traverse
F
and BitraverseG
,[x, y]F[G[x, y]]
, is a BitraverseThe composition of Traverse
F
and BitraverseG
,[x, y]F[G[x, y]]
, is a Bitraverse- Definition Classes
- Traverse
-
def
bicompose[G[_, _]](implicit arg0: Bifoldable[G]): Bifoldable[[α, β]F[G[α, β]]]
The composition of Foldable
F
and BifoldableG
,[x, y]F[G[x, y]]
, is a BifoldableThe composition of Foldable
F
and BifoldableG
,[x, y]F[G[x, y]]
, is a Bifoldable- Definition Classes
- Foldable
-
def
bicompose[G[_, _]](implicit arg0: Bifunctor[G]): Bifunctor[[α, β]F[G[α, β]]]
The composition of Functor
F
and BifunctorG
,[x, y]F[G[x, y]]
, is a BifunctorThe composition of Functor
F
and BifunctorG
,[x, y]F[G[x, y]]
, is a Bifunctor- Definition Classes
- Functor
-
def
clone(): AnyRef
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
def
collapse[X[_], A](x: F[A])(implicit A: ApplicativePlus[X]): X[A]
- Definition Classes
- Foldable
-
def
compose[G[_]](implicit arg0: Traverse1[G]): Traverse1[[α]F[G[α]]]
The composition of Traverse1
F
andG
,[x]F[G[x]]
, is a Traverse1The composition of Traverse1
F
andG
,[x]F[G[x]]
, is a Traverse1- Definition Classes
- Traverse1
-
def
compose[G[_]](implicit arg0: Foldable1[G]): Foldable1[[α]F[G[α]]]
The composition of Foldable1
F
andG
,[x]F[G[x]]
, is a Foldable1The composition of Foldable1
F
andG
,[x]F[G[x]]
, is a Foldable1- Definition Classes
- Foldable1
-
def
compose[G[_]](implicit G0: Traverse[G]): Traverse[[α]F[G[α]]]
The composition of Traverses
F
andG
,[x]F[G[x]]
, is a TraverseThe composition of Traverses
F
andG
,[x]F[G[x]]
, is a Traverse- Definition Classes
- Traverse
-
def
compose[G[_]](implicit G0: Foldable[G]): Foldable[[α]F[G[α]]]
The composition of Foldables
F
andG
,[x]F[G[x]]
, is a FoldableThe composition of Foldables
F
andG
,[x]F[G[x]]
, is a Foldable- Definition Classes
- Foldable
-
def
compose[G[_]](implicit G0: Functor[G]): Functor[[α]F[G[α]]]
The composition of Functors
F
andG
,[x]F[G[x]]
, is a FunctorThe composition of Functors
F
andG
,[x]F[G[x]]
, is a Functor- Definition Classes
- Functor
-
final
def
count[A](fa: F[A]): Int
Alias for
length
.Alias for
length
.- Definition Classes
- Foldable
-
def
counzip[A, B](a: \/[F[A], F[B]]): F[\/[A, B]]
- Definition Classes
- Functor
-
def
distinct[A](fa: F[A])(implicit A: Order[A]): IList[A]
complexityO(n log n)
complexityO(n log n)
- Definition Classes
- Foldable
-
def
distinct1[A](fa: F[A])(implicit A: Order[A]): NonEmptyList[A]
complexityO(n log n)
complexityO(n log n)
- Definition Classes
- Foldable1
-
def
distinctBy[A, B](fa: F[A])(f: (A) ⇒ B)(implicit arg0: Equal[B]): IList[A]
- Definition Classes
- Foldable
-
def
distinctE[A](fa: F[A])(implicit A: Equal[A]): IList[A]
complexityO(n2)
complexityO(n2)
- Definition Classes
- Foldable
-
def
distinctE1[A](fa: F[A])(implicit A: Equal[A]): NonEmptyList[A]
complexityO(n2)
complexityO(n2)
- Definition Classes
- Foldable1
-
def
element[A](fa: F[A], a: A)(implicit arg0: Equal[A]): Boolean
Whether
a
is an element offa
.Whether
a
is an element offa
.- Definition Classes
- Foldable
-
final
def
empty[A](fa: F[A]): Boolean
always return
false
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
extrema[A](fa: F[A])(implicit arg0: Order[A]): Option[(A, A)]
The smallest and largest elements of
fa
or None iffa
is emptyThe smallest and largest elements of
fa
or None iffa
is empty- Definition Classes
- Foldable
-
def
extremaBy[A, B](fa: F[A])(f: (A) ⇒ B)(implicit arg0: Order[B]): Option[(A, A)]
The elements (amin, amax) of
fa
which yield the smallest and largest values off(a)
, respectively, or None iffa
is emptyThe elements (amin, amax) of
fa
which yield the smallest and largest values off(a)
, respectively, or None iffa
is empty- Definition Classes
- Foldable
-
def
extremaOf[A, B](fa: F[A])(f: (A) ⇒ B)(implicit arg0: Order[B]): Option[(B, B)]
The smallest and largest values of
f(a)
for each elementa
offa
, or None iffa
is emptyThe smallest and largest values of
f(a)
for each elementa
offa
, or None iffa
is empty- Definition Classes
- Foldable
-
def
filterLength[A](fa: F[A])(f: (A) ⇒ Boolean): Int
- Definition Classes
- Foldable
-
def
finalize(): Unit
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
-
def
findLeft[A](fa: F[A])(f: (A) ⇒ Boolean): Option[A]
- Definition Classes
- Foldable
-
final
def
findMapM[M[_], A, B](fa: F[A])(f: (A) ⇒ M[Option[B]])(implicit arg0: Monad[M]): M[Option[B]]
map elements in a Foldable with a monadic function and return the first element that is mapped successfully
map elements in a Foldable with a monadic function and return the first element that is mapped successfully
- Definition Classes
- Foldable
-
def
findRight[A](fa: F[A])(f: (A) ⇒ Boolean): Option[A]
- Definition Classes
- Foldable
-
def
fold[M](t: F[M])(implicit arg0: Monoid[M]): M
Combine the elements of a structure using a monoid.
Combine the elements of a structure using a monoid.
- Definition Classes
- Foldable
-
def
fold1[M](t: F[M])(implicit arg0: Semigroup[M]): M
- Definition Classes
- Foldable1
-
def
fold1Opt[A](fa: F[A])(implicit arg0: Semigroup[A]): Option[A]
Like
fold
but returningNone
if the foldable is empty andSome
otherwiseLike
fold
but returningNone
if the foldable is empty andSome
otherwise- Definition Classes
- Foldable
-
def
foldLShape[A, B](fa: F[A], z: B)(f: (B, A) ⇒ B): (B, F[Unit])
- Definition Classes
- Traverse
-
def
foldLeft[A, B](fa: F[A], z: B)(f: (B, A) ⇒ B): B
Left-associative fold of a structure.
Left-associative fold of a structure.
- Definition Classes
- IsomorphismFoldable → Foldable
-
def
foldLeft1[A](fa: F[A])(f: (A, A) ⇒ A): A
Left-associative fold of a structure.
Left-associative fold of a structure.
- Definition Classes
- Foldable1
-
def
foldLeft1Opt[A](fa: F[A])(f: (A, A) ⇒ A): Option[A]
- Definition Classes
- Foldable
-
def
foldLeftM[G[_], A, B](fa: F[A], z: B)(f: (B, A) ⇒ G[B])(implicit M: Monad[G]): G[B]
Left-associative, monadic fold of a structure.
Left-associative, monadic fold of a structure.
- Definition Classes
- Foldable
-
def
foldMap[A, B](fa: F[A])(f: (A) ⇒ B)(implicit F: Monoid[B]): B
Map each element of the structure to a scalaz.Monoid, and combine the results.
Map each element of the structure to a scalaz.Monoid, and combine the results.
- Definition Classes
- IsomorphismFoldable → Foldable
-
final
def
foldMap1[A, B](fa: F[A])(f: (A) ⇒ B)(implicit arg0: Semigroup[B]): B
Map each element of the structure to a scalaz.Semigroup, and combine the results.
Map each element of the structure to a scalaz.Semigroup, and combine the results.
- Definition Classes
- IsomorphismFoldable1 → Foldable1
-
def
foldMap1Opt[A, B](fa: F[A])(f: (A) ⇒ B)(implicit F: Semigroup[B]): Option[B]
As
foldMap
but returningNone
if the foldable is empty andSome
otherwise -
final
def
foldMapLeft1[A, B](fa: F[A])(z: (A) ⇒ B)(f: (B, A) ⇒ B): B
Left-associative fold of a structure.
Left-associative fold of a structure.
- Definition Classes
- IsomorphismFoldable1 → Foldable1
- def foldMapLeft1Opt[A, B](fa: F[A])(z: (A) ⇒ B)(f: (B, A) ⇒ B): Option[B]
-
def
foldMapM[G[_], A, B](fa: F[A])(f: (A) ⇒ G[B])(implicit B: Monoid[B], G: Monad[G]): G[B]
Specialization of foldRightM when
B
has aMonoid
.Specialization of foldRightM when
B
has aMonoid
.- Definition Classes
- Foldable
-
final
def
foldMapRight1[A, B](fa: F[A])(z: (A) ⇒ B)(f: (A, ⇒ B) ⇒ B): B
Right-associative fold of a structure.
Right-associative fold of a structure.
- Definition Classes
- IsomorphismFoldable1 → Foldable1
- def foldMapRight1Opt[A, B](fa: F[A])(z: (A) ⇒ B)(f: (A, ⇒ B) ⇒ B): Option[B]
-
def
foldRight[A, B](fa: F[A], z: ⇒ B)(f: (A, ⇒ B) ⇒ B): B
Right-associative fold of a structure.
Right-associative fold of a structure.
- Definition Classes
- IsomorphismFoldable → Foldable
-
def
foldRight1[A](fa: F[A])(f: (A, ⇒ A) ⇒ A): A
Right-associative fold of a structure.
Right-associative fold of a structure.
- Definition Classes
- Foldable1
-
def
foldRight1Opt[A](fa: F[A])(f: (A, ⇒ A) ⇒ A): Option[A]
- Definition Classes
- Foldable
-
def
foldRightM[G[_], A, B](fa: F[A], z: ⇒ B)(f: (A, ⇒ B) ⇒ G[B])(implicit M: Monad[G]): G[B]
Right-associative, monadic fold of a structure.
Right-associative, monadic fold of a structure.
- Definition Classes
- Foldable
-
def
foldable1Law: Foldable1Law
- Definition Classes
- Foldable1
-
val
foldable1Syntax: Foldable1Syntax[F]
- Definition Classes
- Foldable1
-
def
foldableLaw: FoldableLaw
- Definition Classes
- Foldable
-
val
foldableSyntax: FoldableSyntax[F]
- Definition Classes
- Foldable
-
final
def
foldl[A, B](fa: F[A], z: B)(f: (B) ⇒ (A) ⇒ B): B
Curried version of
foldLeft
Curried version of
foldLeft
- Definition Classes
- Foldable
-
final
def
foldl1[A](fa: F[A])(f: (A) ⇒ (A) ⇒ A): A
Curried
foldLeft1
.Curried
foldLeft1
.- Definition Classes
- Foldable1
- def foldl1Opt[A](fa: F[A])(f: (A) ⇒ (A) ⇒ A): Option[A]
-
final
def
foldlM[G[_], A, B](fa: F[A], z: ⇒ B)(f: (B) ⇒ (A) ⇒ G[B])(implicit M: Monad[G]): G[B]
Curried version of
foldLeftM
Curried version of
foldLeftM
- Definition Classes
- Foldable
-
final
def
foldr[A, B](fa: F[A], z: ⇒ B)(f: (A) ⇒ (⇒ B) ⇒ B): B
Curried version of
foldRight
Curried version of
foldRight
- Definition Classes
- Foldable
-
final
def
foldr1[A](fa: F[A])(f: (A) ⇒ (⇒ A) ⇒ A): A
Curried
foldRight1
.Curried
foldRight1
.- Definition Classes
- Foldable1
- def foldr1Opt[A](fa: F[A])(f: (A) ⇒ (⇒ A) ⇒ A): Option[A]
-
final
def
foldrM[G[_], A, B](fa: F[A], z: ⇒ B)(f: (A) ⇒ (⇒ B) ⇒ G[B])(implicit M: Monad[G]): G[B]
Curried version of
foldRightM
Curried version of
foldRightM
- Definition Classes
- Foldable
-
def
fpair[A](fa: F[A]): F[(A, A)]
Twin all
A
s infa
.Twin all
A
s infa
.- Definition Classes
- Functor
-
def
fproduct[A, B](fa: F[A])(f: (A) ⇒ B): F[(A, B)]
Pair all
A
s infa
with the result of function application.Pair all
A
s infa
with the result of function application.- Definition Classes
- Functor
-
def
functorLaw: FunctorLaw
- Definition Classes
- Functor
-
val
functorSyntax: FunctorSyntax[F]
- Definition Classes
- Functor
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
-
def
icompose[G[_]](implicit G0: Contravariant[G]): Contravariant[[α]F[G[α]]]
The composition of Functor F and Contravariant G,
[x]F[G[x]]
, is contravariant.The composition of Functor F and Contravariant G,
[x]F[G[x]]
, is contravariant.- Definition Classes
- Functor
-
def
index[A](fa: F[A], i: Int): Option[A]
- returns
the element at index
i
in aSome
, orNone
if the given index falls outside of the range
- Definition Classes
- Foldable
-
def
indexOr[A](fa: F[A], default: ⇒ A, i: Int): A
- returns
the element at index
i
, ordefault
if the given index falls outside of the range
- Definition Classes
- Foldable
-
def
indexed[A](fa: F[A]): F[(Int, A)]
- Definition Classes
- Traverse
-
def
intercalate[A](fa: F[A], a: A)(implicit arg0: Monoid[A]): A
Insert an
A
between every A, yielding the sum. -
def
intercalate1[A](fa: F[A], a: A)(implicit A: Semigroup[A]): A
Insert an
A
between every A, yielding the sum.Insert an
A
between every A, yielding the sum.- Definition Classes
- Foldable1
-
def
invariantFunctorLaw: InvariantFunctorLaw
- Definition Classes
- InvariantFunctor
-
val
invariantFunctorSyntax: InvariantFunctorSyntax[F]
- Definition Classes
- InvariantFunctor
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
def
length[A](fa: F[A]): Int
Deforested alias for
toStream(fa).size
.Deforested alias for
toStream(fa).size
.- Definition Classes
- Foldable
-
def
lift[A, B](f: (A) ⇒ B): (F[A]) ⇒ F[B]
Lift
f
intoF
.Lift
f
intoF
.- Definition Classes
- Functor
-
def
longDigits[A](fa: F[A])(implicit d: <:<[A, Digit]): Long
- Definition Classes
- Foldable
-
def
map[A, B](fa: F[A])(f: (A) ⇒ B): F[B]
Lift
f
intoF
and apply toF[A]
.Lift
f
intoF
and apply toF[A]
.- Definition Classes
- IsomorphismFunctor → Functor
-
def
mapAccumL[S, A, B](fa: F[A], z: S)(f: (S, A) ⇒ (S, B)): (S, F[B])
- Definition Classes
- Traverse
-
def
mapAccumR[S, A, B](fa: F[A], z: S)(f: (S, A) ⇒ (S, B)): (S, F[B])
- Definition Classes
- Traverse
-
def
mapply[A, B](a: A)(f: F[(A) ⇒ B]): F[B]
Lift
apply(a)
, and apply the result tof
.Lift
apply(a)
, and apply the result tof
.- Definition Classes
- Functor
-
def
maximum[A](fa: F[A])(implicit arg0: Order[A]): Option[A]
The greatest element of
fa
, or None iffa
is empty. -
def
maximum1[A](fa: F[A])(implicit arg0: Order[A]): A
The greatest element of
fa
.The greatest element of
fa
.- Definition Classes
- Foldable1
-
def
maximumBy[A, B](fa: F[A])(f: (A) ⇒ B)(implicit arg0: Order[B]): Option[A]
The element
a
offa
which yields the greatest value off(a)
, or None iffa
is empty. -
def
maximumBy1[A, B](fa: F[A])(f: (A) ⇒ B)(implicit arg0: Order[B]): A
The element
a
offa
which yield the greatest value off(a)
.The element
a
offa
which yield the greatest value off(a)
.- Definition Classes
- Foldable1
-
def
maximumOf[A, B](fa: F[A])(f: (A) ⇒ B)(implicit arg0: Order[B]): Option[B]
The greatest value of
f(a)
for each elementa
offa
, or None iffa
is empty. -
def
maximumOf1[A, B](fa: F[A])(f: (A) ⇒ B)(implicit arg0: Order[B]): B
The greatest value of
f(a)
for each elementa
offa
.The greatest value of
f(a)
for each elementa
offa
.- Definition Classes
- Foldable1
-
def
minimum[A](fa: F[A])(implicit arg0: Order[A]): Option[A]
The smallest element of
fa
, or None iffa
is empty. -
def
minimum1[A](fa: F[A])(implicit arg0: Order[A]): A
The smallest element of
fa
.The smallest element of
fa
.- Definition Classes
- Foldable1
-
def
minimumBy[A, B](fa: F[A])(f: (A) ⇒ B)(implicit arg0: Order[B]): Option[A]
The element
a
offa
which yields the smallest value off(a)
, or None iffa
is empty. -
def
minimumBy1[A, B](fa: F[A])(f: (A) ⇒ B)(implicit arg0: Order[B]): A
The element
a
offa
which yield the smallest value off(a)
.The element
a
offa
which yield the smallest value off(a)
.- Definition Classes
- Foldable1
-
def
minimumOf[A, B](fa: F[A])(f: (A) ⇒ B)(implicit arg0: Order[B]): Option[B]
The smallest value of
f(a)
for each elementa
offa
, or None iffa
is empty. -
def
minimumOf1[A, B](fa: F[A])(f: (A) ⇒ B)(implicit arg0: Order[B]): B
The smallest value of
f(a)
for each elementa
offa
.The smallest value of
f(a)
for each elementa
offa
.- Definition Classes
- Foldable1
-
def
msuml[G[_], A](fa: F[G[A]])(implicit G: PlusEmpty[G]): G[A]
- Definition Classes
- Foldable
-
def
msuml1[G[_], A](fa: F[G[A]])(implicit G: Plus[G]): G[A]
- Definition Classes
- Foldable1
-
def
msumlU[GA](fa: F[GA])(implicit G: Unapply[PlusEmpty, GA]): M[A]
- Definition Classes
- Foldable
-
final
def
naturalTrans: ~>[F, G]
- Attributes
- protected[this]
- Definition Classes
- IsomorphismTraverse → IsomorphismFoldable
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
-
def
product[G[_]](implicit G0: Traverse1[G]): Traverse1[[α](F[α], G[α])]
The product of Traverse1
F
andG
,[x](F[x], G[x]])
, is a Traverse1The product of Traverse1
F
andG
,[x](F[x], G[x]])
, is a Traverse1- Definition Classes
- Traverse1
-
def
product[G[_]](implicit G0: Foldable1[G]): Foldable1[[α](F[α], G[α])]
The product of Foldable1
F
andG
,[x](F[x], G[x]])
, is a Foldable1The product of Foldable1
F
andG
,[x](F[x], G[x]])
, is a Foldable1- Definition Classes
- Foldable1
-
def
product[G[_]](implicit G0: Traverse[G]): Traverse[[α](F[α], G[α])]
The product of Traverses
F
andG
,[x](F[x], G[x]])
, is a TraverseThe product of Traverses
F
andG
,[x](F[x], G[x]])
, is a Traverse- Definition Classes
- Traverse
-
def
product[G[_]](implicit G0: Foldable[G]): Foldable[[α](F[α], G[α])]
The product of Foldables
F
andG
,[x](F[x], G[x]])
, is a FoldableThe product of Foldables
F
andG
,[x](F[x], G[x]])
, is a Foldable- Definition Classes
- Foldable
-
def
product[G[_]](implicit G0: Functor[G]): Functor[[α](F[α], G[α])]
The product of Functors
F
andG
,[x](F[x], G[x]])
, is a FunctorThe product of Functors
F
andG
,[x](F[x], G[x]])
, is a Functor- Definition Classes
- Functor
-
def
product0[G[_]](implicit G0: Traverse[G]): Traverse1[[α](F[α], G[α])]
The product of Traverse1
F
and TraverseG
,[x](F[x], G[x]])
, is a Traverse1The product of Traverse1
F
and TraverseG
,[x](F[x], G[x]])
, is a Traverse1- Definition Classes
- Traverse1
-
def
product0[G[_]](implicit G0: Foldable[G]): Foldable1[[α](F[α], G[α])]
The product of Foldable1
F
and FoldableG
,[x](F[x], G[x]])
, is a Foldable1The product of Foldable1
F
and FoldableG
,[x](F[x], G[x]])
, is a Foldable1- Definition Classes
- Foldable1
-
def
product0[G[_]](implicit G0: Traverse1[G]): Traverse1[[α](F[α], G[α])]
The product of Traverse
F
and Traverse1G
,[x](F[x], G[x]])
, is a Traverse1The product of Traverse
F
and Traverse1G
,[x](F[x], G[x]])
, is a Traverse1- Definition Classes
- Traverse
-
def
product0[G[_]](implicit G0: Foldable1[G]): Foldable1[[α](F[α], G[α])]
The product of Foldable
F
and Foldable1G
,[x](F[x], G[x]])
, is a Foldable1The product of Foldable
F
and Foldable1G
,[x](F[x], G[x]])
, is a Foldable1- Definition Classes
- Foldable
-
def
reverse[A](fa: F[A]): F[A]
- Definition Classes
- Traverse
-
def
runTraverseS[S, A, B](fa: F[A], s: S)(f: (A) ⇒ State[S, B]): (S, F[B])
- Definition Classes
- Traverse
-
def
scanLeft1[A](fa: F[A])(f: (A, A) ⇒ A): NonEmptyList[A]
- Definition Classes
- Foldable1
-
def
scanRight1[A](fa: F[A])(f: (A, A) ⇒ A): NonEmptyList[A]
- Definition Classes
- Foldable1
-
def
selectSplit[A](fa: F[A])(p: (A) ⇒ Boolean): List[NonEmptyList[A]]
Selects groups of elements that satisfy p and discards others.
Selects groups of elements that satisfy p and discards others.
- Definition Classes
- Foldable
-
def
sequence[G[_], A](fga: F[G[A]])(implicit arg0: Applicative[G]): G[F[A]]
Traverse with the identity function.
Traverse with the identity function.
- Definition Classes
- Traverse
-
def
sequence1[G[_], A](fga: F[G[A]])(implicit arg0: Apply[G]): G[F[A]]
- Definition Classes
- Traverse1
-
final
def
sequence1U[GA](fga: F[GA])(implicit G: Unapply[Apply, GA]): M[F[A]]
- Definition Classes
- Traverse1
-
def
sequence1_[M[_], A](fa: F[M[A]])(implicit a: Apply[M], x: Semigroup[M[A]]): M[Unit]
- Definition Classes
- Foldable1
-
def
sequenceF_[M[_], A](ffa: F[Free[M, A]]): Free[M, Unit]
sequence_
for Free.sequence_
for Free. collapses into a single Free *- Definition Classes
- Foldable
-
def
sequenceS[S, A](fga: F[State[S, A]]): State[S, F[A]]
Traverse with
State
.Traverse with
State
.- Definition Classes
- Traverse
-
def
sequenceS_[S, A](fga: F[State[S, A]]): State[S, Unit]
sequence_
specialized toState
*sequence_
specialized toState
*- Definition Classes
- Foldable
-
final
def
sequenceU[A](self: F[A])(implicit G: Unapply[Applicative, A]): M[F[A]]
A version of
sequence
that infers the nested type constructor.A version of
sequence
that infers the nested type constructor.- Definition Classes
- Traverse
-
def
sequence_[M[_], A](fa: F[M[A]])(implicit a: Applicative[M]): M[Unit]
Strict sequencing in an applicative functor
M
that ignores the value infa
.Strict sequencing in an applicative functor
M
that ignores the value infa
.- Definition Classes
- Foldable
-
def
splitBy[A, B](fa: F[A])(f: (A) ⇒ B)(implicit arg0: Equal[B]): IList[(B, NonEmptyList[A])]
Splits the elements into groups that produce the same result by a function f.
Splits the elements into groups that produce the same result by a function f.
- Definition Classes
- Foldable
-
def
splitByRelation[A](fa: F[A])(r: (A, A) ⇒ Boolean): IList[NonEmptyList[A]]
Splits into groups of elements that are transitively dependant by a relation r.
Splits into groups of elements that are transitively dependant by a relation r.
- Definition Classes
- Foldable
-
def
splitWith[A](fa: F[A])(p: (A) ⇒ Boolean): List[NonEmptyList[A]]
Splits the elements into groups that alternatively satisfy and don't satisfy the predicate p.
Splits the elements into groups that alternatively satisfy and don't satisfy the predicate p.
- Definition Classes
- Foldable
-
def
strengthL[A, B](a: A, f: F[B]): F[(A, B)]
Inject
a
to the left ofB
s inf
.Inject
a
to the left ofB
s inf
.- Definition Classes
- Functor
-
def
strengthR[A, B](f: F[A], b: B): F[(A, B)]
Inject
b
to the right ofA
s inf
.Inject
b
to the right ofA
s inf
.- Definition Classes
- Functor
-
def
suml[A](fa: F[A])(implicit A: Monoid[A]): A
- Definition Classes
- Foldable
-
def
suml1[A](fa: F[A])(implicit A: Semigroup[A]): A
- Definition Classes
- Foldable1
-
def
suml1Opt[A](fa: F[A])(implicit A: Semigroup[A]): Option[A]
- Definition Classes
- Foldable
-
def
sumr[A](fa: F[A])(implicit A: Monoid[A]): A
- Definition Classes
- Foldable
-
def
sumr1[A](fa: F[A])(implicit A: Semigroup[A]): A
- Definition Classes
- Foldable1
-
def
sumr1Opt[A](fa: F[A])(implicit A: Semigroup[A]): Option[A]
- Definition Classes
- Foldable
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
def
to[A, G[_]](fa: F[A])(implicit c: CanBuildFrom[Nothing, A, G[A]]): G[A]
- Definition Classes
- Foldable
-
def
toEphemeralStream[A](fa: F[A]): EphemeralStream[A]
- Definition Classes
- Foldable
-
def
toIList[A](fa: F[A]): IList[A]
- Definition Classes
- Foldable
-
def
toList[A](fa: F[A]): List[A]
- Definition Classes
- Foldable
-
def
toNel[A](fa: F[A]): NonEmptyList[A]
- Definition Classes
- Foldable1
-
def
toSet[A](fa: F[A]): Set[A]
- Definition Classes
- Foldable
-
def
toStream[A](fa: F[A]): Stream[A]
- Definition Classes
- Foldable
-
def
toString(): String
- Definition Classes
- AnyRef → Any
-
def
toVector[A](fa: F[A]): Vector[A]
- Definition Classes
- Foldable
-
def
traversal[G[_]](implicit arg0: Applicative[G]): Traversal[G]
- Definition Classes
- Traverse
-
def
traversalS[S]: Traversal[[β$0$]IndexedStateT[[X]X, S, S, β$0$]]
- Definition Classes
- Traverse
-
def
traverse[G[_], A, B](fa: F[A])(f: (A) ⇒ G[B])(implicit arg0: Applicative[G]): G[F[B]]
- Definition Classes
- Traverse
-
def
traverse1[G[_], A, B](fa: F[A])(f: (A) ⇒ G[B])(implicit a: Apply[G]): G[F[B]]
- Definition Classes
- Traverse1
-
def
traverse1Impl[H[_], A, B](fa: F[A])(f: (A) ⇒ H[B])(implicit arg0: Apply[H]): H[F[B]]
Transform
fa
usingf
, collecting all theG
s withap
.Transform
fa
usingf
, collecting all theG
s withap
.- Definition Classes
- IsomorphismTraverse1 → Traverse1
-
def
traverse1Law: Traverse1Law
- Definition Classes
- Traverse1
-
val
traverse1Syntax: Traverse1Syntax[F]
- Definition Classes
- Traverse1
-
final
def
traverse1U[A, GB](fa: F[A])(f: (A) ⇒ GB)(implicit G: Unapply[Apply, GB]): M[F[A]]
- Definition Classes
- Traverse1
-
def
traverse1_[M[_], A, B](fa: F[A])(f: (A) ⇒ M[B])(implicit a: Apply[M], x: Semigroup[M[B]]): M[Unit]
- Definition Classes
- Foldable1
-
def
traverseImpl[H[_], A, B](fa: F[A])(f: (A) ⇒ H[B])(implicit arg0: Applicative[H]): H[F[B]]
Transform
fa
usingf
, collecting all theG
s withap
.Transform
fa
usingf
, collecting all theG
s withap
.- Definition Classes
- IsomorphismTraverse → Traverse
-
def
traverseKTrampoline[S, G[_], A, B](fa: F[A])(f: (A) ⇒ Kleisli[G, S, B])(implicit arg0: Applicative[G]): Kleisli[G, S, F[B]]
Traverse
fa
with aKleisli[G, S, B]
, internally using aTrampoline
to avoid stack overflow.Traverse
fa
with aKleisli[G, S, B]
, internally using aTrampoline
to avoid stack overflow.- Definition Classes
- Traverse
-
def
traverseLaw: TraverseLaw
- Definition Classes
- Traverse
-
final
def
traverseM[A, G[_], B](fa: F[A])(f: (A) ⇒ G[F[B]])(implicit G: Applicative[G], F: Bind[F]): G[F[B]]
A version of
traverse
where a subsequent monadic join is applied to the inner result.A version of
traverse
where a subsequent monadic join is applied to the inner result.- Definition Classes
- Traverse
-
def
traverseS[S, A, B](fa: F[A])(f: (A) ⇒ State[S, B]): State[S, F[B]]
Traverse with
State
.Traverse with
State
.- Definition Classes
- Traverse
-
def
traverseSTrampoline[S, G[_], A, B](fa: F[A])(f: (A) ⇒ State[S, G[B]])(implicit arg0: Applicative[G]): State[S, G[F[B]]]
Traverse
fa
with aState[S, G[B]]
, internally using aTrampoline
to avoid stack overflow.Traverse
fa
with aState[S, G[B]]
, internally using aTrampoline
to avoid stack overflow.- Definition Classes
- Traverse
-
def
traverseS_[S, A, B](fa: F[A])(f: (A) ⇒ State[S, B]): State[S, Unit]
traverse_
specialized toState
*traverse_
specialized toState
*- Definition Classes
- Foldable
-
val
traverseSyntax: TraverseSyntax[F]
- Definition Classes
- Traverse
-
final
def
traverseU[A, GB](fa: F[A])(f: (A) ⇒ GB)(implicit G: Unapply[Applicative, GB]): M[F[A]]
A version of
traverse
that infers the type constructorG
.A version of
traverse
that infers the type constructorG
.- Definition Classes
- Traverse
-
final
def
traverseU_[A, GB](fa: F[A])(f: (A) ⇒ GB)(implicit G: Unapply[Applicative, GB]): M[Unit]
A version of
traverse_
that infers the type constructorM
.A version of
traverse_
that infers the type constructorM
.- Definition Classes
- Foldable
-
def
traverse_[M[_], A, B](fa: F[A])(f: (A) ⇒ M[B])(implicit a: Applicative[M]): M[Unit]
Strict traversal in an applicative functor
M
that ignores the result off
.Strict traversal in an applicative functor
M
that ignores the result off
.- Definition Classes
- Foldable
-
def
void[A](fa: F[A]): F[Unit]
Empty
fa
of meaningful pure values, preserving its structure.Empty
fa
of meaningful pure values, preserving its structure.- Definition Classes
- Functor
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
def
widen[A, B](fa: F[A])(implicit ev: <~<[A, B]): F[B]
Functors are covariant by nature, so we can treat an
F[A]
as anF[B]
ifA
is a subtype ofB
.Functors are covariant by nature, so we can treat an
F[A]
as anF[B]
ifA
is a subtype ofB
.- Definition Classes
- Functor
-
def
xmap[A, B](fa: F[A], f: (A) ⇒ B, g: (B) ⇒ A): F[B]
Converts
ma
to a value of typeF[B]
using the provided functionsf
andg
.Converts
ma
to a value of typeF[B]
using the provided functionsf
andg
.- Definition Classes
- Functor → InvariantFunctor
-
def
xmapb[A, B](ma: F[A])(b: Bijection[A, B]): F[B]
Converts
ma
to a value of typeF[B]
using the provided bijection.Converts
ma
to a value of typeF[B]
using the provided bijection.- Definition Classes
- InvariantFunctor
-
def
xmapi[A, B](ma: F[A])(iso: Isomorphism.<=>[A, B]): F[B]
Converts
ma
to a value of typeF[B]
using the provided isomorphism.Converts
ma
to a value of typeF[B]
using the provided isomorphism.- Definition Classes
- InvariantFunctor
-
def
zipL[A, B](fa: F[A], fb: F[B]): F[(A, Option[B])]
- Definition Classes
- Traverse
-
def
zipR[A, B](fa: F[A], fb: F[B]): F[(Option[A], B)]
- Definition Classes
- Traverse
-
def
zipWith[A, B, C](fa: F[A], fb: F[B])(f: (A, Option[B]) ⇒ C): (List[B], F[C])
- Definition Classes
- Traverse
-
def
zipWithL[A, B, C](fa: F[A], fb: F[B])(f: (A, Option[B]) ⇒ C): F[C]
- Definition Classes
- Traverse
-
def
zipWithR[A, B, C](fa: F[A], fb: F[B])(f: (Option[A], B) ⇒ C): F[C]
- Definition Classes
- Traverse