Packages

c

chisel3

Element

abstract class Element extends Data

Element is a leaf data type: it cannot contain other Data objects. Example uses are for representing primitive data types, like integers and bits.

Source
Element.scala
Linear Supertypes
Data, SourceInfoDoc, NamedComponent, HasId, InstanceId, AnyRef, Any
Type Hierarchy
Ordering
  1. Grouped
  2. Alphabetic
  3. By Inheritance
Inherited
  1. Element
  2. Data
  3. SourceInfoDoc
  4. NamedComponent
  5. HasId
  6. InstanceId
  7. AnyRef
  8. Any
Implicitly
  1. by DataEquality
  2. by toConnectableDefault
  3. by ConnectableDefault
  4. by any2stringadd
  5. by StringFormat
  6. by Ensuring
  7. by ArrowAssoc
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. Protected

Instance Constructors

  1. new Element()

Abstract Value Members

  1. abstract def cloneType: Element.this.type

    Internal API; Chisel users should look at chisel3.chiselTypeOf(...).

    Internal API; Chisel users should look at chisel3.chiselTypeOf(...).

    cloneType must be defined for any Chisel object extending Data. It is responsible for constructing a basic copy of the object being cloned.

    returns

    a copy of the object.

    Definition Classes
    Data
  2. abstract def do_asUInt(implicit sourceInfo: SourceInfo, compileOptions: CompileOptions): UInt

    Definition Classes
    Data
  3. abstract def toPrintable: Printable

    Default pretty printing

    Default pretty printing

    Definition Classes
    Data

Concrete Value Members

  1. final def !=(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  2. final def ##: Int
    Definition Classes
    AnyRef → Any
  3. def +(other: String): String
    Implicit
    This member is added by an implicit conversion from Element toany2stringadd[Element] performed by method any2stringadd in scala.Predef.
    Definition Classes
    any2stringadd
  4. def ->[B](y: B): (Element, B)
    Implicit
    This member is added by an implicit conversion from Element toArrowAssoc[Element] performed by method ArrowAssoc in scala.Predef.
    Definition Classes
    ArrowAssoc
    Annotations
    @inline()
  5. final def :#=(producer: DontCare.type)(implicit sourceInfo: SourceInfo): Unit

    The "mono-direction connection operator", aka the "coercion operator".

    The "mono-direction connection operator", aka the "coercion operator".

    For consumer :#= producer, all leaf members of consumer (regardless of relative flip) are driven by the corresponding leaf members of producer (regardless of relative flip)

    Identical to calling :<= and :>=, but swapping consumer/producer for :>= (order is irrelevant), e.g.: consumer :<= producer producer :>= consumer

    Symbol reference:

    • ':' is the consumer side
    • '=' is the producer side
    • '#' means to ignore flips, always drive from producer to consumer

    The following restrictions apply:

    • The Chisel type of consumer and producer must be the "same shape" recursively:
      • All ground types are the same (UInt and UInt are same, SInt and UInt are not), but widths can be different (implicit trunction/padding occurs)
      • All vector types are the same length
      • All bundle types have the same member names, but the flips of members can be different between producer and consumer
    • The leaf members that are ultimately assigned to, must be assignable. This means they cannot be module inputs or instance outputs.

    Additional notes: - Connecting two util.DecoupledIO's would connect bits, valid, AND ready from producer to consumer (despite ready being flipped) - Functionally equivalent to chisel3.:=, but different than Chisel.:=

    producer

    the right-hand-side of the connection, all members will be driving, none will be driven-to

    Implicit
    This member is added by an implicit conversion from Element toConnectableDefault[Element] performed by method ConnectableDefault in chisel3.Data.
    Definition Classes
    ConnectableOpExtension
  6. final def :#=[S <: Data](producer: connectable.Connectable[S])(implicit evidence: =:=[Element, S], sourceInfo: SourceInfo): Unit

    The "mono-direction connection operator", aka the "coercion operator".

    The "mono-direction connection operator", aka the "coercion operator".

    For consumer :#= producer, all leaf members of consumer (regardless of relative flip) are driven by the corresponding leaf members of producer (regardless of relative flip)

    Identical to calling :<= and :>=, but swapping consumer/producer for :>= (order is irrelevant), e.g.: consumer :<= producer producer :>= consumer

    Symbol reference:

    • ':' is the consumer side
    • '=' is the producer side
    • '#' means to ignore flips, always drive from producer to consumer

    The following restrictions apply:

    • The Chisel type of consumer and producer must be the "same shape" recursively:
      • All ground types are the same (UInt and UInt are same, SInt and UInt are not), but widths can be different (implicit trunction/padding occurs)
      • All vector types are the same length
      • All bundle types have the same member names, but the flips of members can be different between producer and consumer
    • The leaf members that are ultimately assigned to, must be assignable. This means they cannot be module inputs or instance outputs.

    Additional notes: - Connecting two util.DecoupledIO's would connect bits, valid, AND ready from producer to consumer (despite ready being flipped) - Functionally equivalent to chisel3.:=, but different than Chisel.:=

    producer

    the right-hand-side of the connection, all members will be driving, none will be driven-to

    Implicit
    This member is added by an implicit conversion from Element toConnectableDefault[Element] performed by method ConnectableDefault in chisel3.Data.
    Definition Classes
    ConnectableOpExtension
  7. final def :#=[S <: Data](lProducer: => S)(implicit evidence: =:=[Element, S], sourceInfo: SourceInfo): Unit

    The "mono-direction connection operator", aka the "coercion operator".

    The "mono-direction connection operator", aka the "coercion operator".

    For consumer :#= producer, all leaf members of consumer (regardless of relative flip) are driven by the corresponding leaf members of producer (regardless of relative flip)

    Identical to calling :<= and :>=, but swapping consumer/producer for :>= (order is irrelevant), e.g.: consumer :<= producer producer :>= consumer

    Symbol reference:

    • ':' is the consumer side
    • '=' is the producer side
    • '#' means to ignore flips, always drive from producer to consumer

    The following restrictions apply:

    • The Chisel type of consumer and producer must be the "same shape" recursively:
      • All ground types are the same (UInt and UInt are same, SInt and UInt are not), but widths can be different (implicit trunction/padding occurs)
      • All vector types are the same length
      • All bundle types have the same member names, but the flips of members can be different between producer and consumer
    • The leaf members that are ultimately assigned to, must be assignable. This means they cannot be module inputs or instance outputs.

    Additional notes: - Connecting two util.DecoupledIO's would connect bits, valid, AND ready from producer to consumer (despite ready being flipped) - Functionally equivalent to chisel3.:=, but different than Chisel.:=

    Implicit
    This member is added by an implicit conversion from Element toConnectableDefault[Element] performed by method ConnectableDefault in chisel3.Data.
    Definition Classes
    ConnectableOpExtension
  8. final def :<=(producer: DontCare.type)(implicit sourceInfo: SourceInfo): Unit

    The "aligned connection operator" between a producer and consumer.

    The "aligned connection operator" between a producer and consumer.

    For consumer :<= producer, each of consumer's leaf members which are aligned with respect to consumer are driven from the corresponding producer leaf member. Only consumer's leaf/branch alignments influence the connection.

    Symbol reference:

    • ':' is the consumer side
    • '=' is the producer side
    • '<' means to connect from producer to consumer

    The following restrictions apply:

    • The Chisel type of consumer and producer must be the "same shape" recursively:
      • All ground types are the same (UInt and UInt are same, SInt and UInt are not), but widths can be different (implicit trunction/padding occurs)
      • All vector types are the same length
      • All bundle types have the same member names, but the flips of members can be different between producer and consumer
    • The leaf members that are ultimately assigned to, must be assignable. This means they cannot be module inputs or instance outputs.

    Additional notes:

    • Connecting two util.DecoupledIO's would connect bits and valid from producer to consumer, but leave ready unconnected
    producer

    the right-hand-side of the connection; will always drive leaf connections, and never get driven by leaf connections ("aligned connection")

    Implicit
    This member is added by an implicit conversion from Element toConnectableDefault[Element] performed by method ConnectableDefault in chisel3.Data.
    Definition Classes
    ConnectableOpExtension
  9. final def :<=[S <: Data](producer: connectable.Connectable[S])(implicit evidence: =:=[Element, S], sourceInfo: SourceInfo): Unit

    The "aligned connection operator" between a producer and consumer.

    The "aligned connection operator" between a producer and consumer.

    For consumer :<= producer, each of consumer's leaf members which are aligned with respect to consumer are driven from the corresponding producer leaf member. Only consumer's leaf/branch alignments influence the connection.

    Symbol reference:

    • ':' is the consumer side
    • '=' is the producer side
    • '<' means to connect from producer to consumer

    The following restrictions apply:

    • The Chisel type of consumer and producer must be the "same shape" recursively:
      • All ground types are the same (UInt and UInt are same, SInt and UInt are not), but widths can be different (implicit trunction/padding occurs)
      • All vector types are the same length
      • All bundle types have the same member names, but the flips of members can be different between producer and consumer
    • The leaf members that are ultimately assigned to, must be assignable. This means they cannot be module inputs or instance outputs.

    Additional notes:

    • Connecting two util.DecoupledIO's would connect bits and valid from producer to consumer, but leave ready unconnected
    producer

    the right-hand-side of the connection; will always drive leaf connections, and never get driven by leaf connections ("aligned connection")

    Implicit
    This member is added by an implicit conversion from Element toConnectableDefault[Element] performed by method ConnectableDefault in chisel3.Data.
    Definition Classes
    ConnectableOpExtension
  10. final def :<=[S <: Data](lProducer: => S)(implicit evidence: =:=[Element, S], sourceInfo: SourceInfo): Unit

    The "aligned connection operator" between a producer and consumer.

    The "aligned connection operator" between a producer and consumer.

    For consumer :<= producer, each of consumer's leaf members which are aligned with respect to consumer are driven from the corresponding producer leaf member. Only consumer's leaf/branch alignments influence the connection.

    Symbol reference:

    • ':' is the consumer side
    • '=' is the producer side
    • '<' means to connect from producer to consumer

    The following restrictions apply:

    • The Chisel type of consumer and producer must be the "same shape" recursively:
      • All ground types are the same (UInt and UInt are same, SInt and UInt are not), but widths can be different (implicit trunction/padding occurs)
      • All vector types are the same length
      • All bundle types have the same member names, but the flips of members can be different between producer and consumer
    • The leaf members that are ultimately assigned to, must be assignable. This means they cannot be module inputs or instance outputs.

    Additional notes:

    • Connecting two util.DecoupledIO's would connect bits and valid from producer to consumer, but leave ready unconnected
    Implicit
    This member is added by an implicit conversion from Element toConnectableDefault[Element] performed by method ConnectableDefault in chisel3.Data.
    Definition Classes
    ConnectableOpExtension
  11. final def :<>=(producer: DontCare.type)(implicit sourceInfo: SourceInfo): Unit

    The "bi-direction connection operator", aka the "tur-duck-en operator"

    The "bi-direction connection operator", aka the "tur-duck-en operator"

    For consumer :<>= producer, both producer and consumer leafs could be driving or be driven-to. The consumer's members aligned w.r.t. consumer will be driven by corresponding members of producer; the producer's members flipped w.r.t. producer will be driven by corresponding members of consumer

    Identical to calling :<= and :>= in sequence (order is irrelevant), e.g. consumer :<= producer then consumer :>= producer

    Symbol reference:

    • ':' is the consumer side
    • '=' is the producer side
    • '<' means to connect from producer to consumer
    • '>' means to connect from consumer to producer

    The following restrictions apply:

    • The Chisel type of consumer and producer must be the "same shape" recursively:
      • All ground types are the same (UInt and UInt are same, SInt and UInt are not), but widths can be different (implicit trunction/padding occurs)
      • All vector types are the same length
      • All bundle types have the same member names, but the flips of members can be different between producer and consumer
    • The leaf members that are ultimately assigned to, must be assignable. This means they cannot be module inputs or instance outputs. - An additional type restriction is that all relative orientations of consumer and producer must match exactly.

    Additional notes:

    • Connecting two wires of util.DecoupledIO chisel type would connect bits and valid from producer to consumer, and ready from consumer to producer.
    • If the types of consumer and producer also have identical relative flips, then we can emit FIRRTL.<= as it is a stricter version of chisel3.:<>=
    • "turk-duck-en" is a dish where a turkey is stuffed with a duck, which is stuffed with a chicken; :<>= is a := stuffed with a <>
    producer

    the right-hand-side of the connection

    Implicit
    This member is added by an implicit conversion from Element toConnectableDefault[Element] performed by method ConnectableDefault in chisel3.Data.
    Definition Classes
    ConnectableOpExtension
  12. final def :<>=[S <: Data](producer: connectable.Connectable[S])(implicit evidence: =:=[Element, S], sourceInfo: SourceInfo): Unit

    The "bi-direction connection operator", aka the "tur-duck-en operator"

    The "bi-direction connection operator", aka the "tur-duck-en operator"

    For consumer :<>= producer, both producer and consumer leafs could be driving or be driven-to. The consumer's members aligned w.r.t. consumer will be driven by corresponding members of producer; the producer's members flipped w.r.t. producer will be driven by corresponding members of consumer

    Identical to calling :<= and :>= in sequence (order is irrelevant), e.g. consumer :<= producer then consumer :>= producer

    Symbol reference:

    • ':' is the consumer side
    • '=' is the producer side
    • '<' means to connect from producer to consumer
    • '>' means to connect from consumer to producer

    The following restrictions apply:

    • The Chisel type of consumer and producer must be the "same shape" recursively:
      • All ground types are the same (UInt and UInt are same, SInt and UInt are not), but widths can be different (implicit trunction/padding occurs)
      • All vector types are the same length
      • All bundle types have the same member names, but the flips of members can be different between producer and consumer
    • The leaf members that are ultimately assigned to, must be assignable. This means they cannot be module inputs or instance outputs. - An additional type restriction is that all relative orientations of consumer and producer must match exactly.

    Additional notes:

    • Connecting two wires of util.DecoupledIO chisel type would connect bits and valid from producer to consumer, and ready from consumer to producer.
    • If the types of consumer and producer also have identical relative flips, then we can emit FIRRTL.<= as it is a stricter version of chisel3.:<>=
    • "turk-duck-en" is a dish where a turkey is stuffed with a duck, which is stuffed with a chicken; :<>= is a := stuffed with a <>
    producer

    the right-hand-side of the connection

    Implicit
    This member is added by an implicit conversion from Element toConnectableDefault[Element] performed by method ConnectableDefault in chisel3.Data.
    Definition Classes
    ConnectableOpExtension
  13. final def :<>=[S <: Data](lProducer: => S)(implicit evidence: =:=[Element, S], sourceInfo: SourceInfo): Unit

    The "bi-direction connection operator", aka the "tur-duck-en operator"

    The "bi-direction connection operator", aka the "tur-duck-en operator"

    For consumer :<>= producer, both producer and consumer leafs could be driving or be driven-to. The consumer's members aligned w.r.t. consumer will be driven by corresponding members of producer; the producer's members flipped w.r.t. producer will be driven by corresponding members of consumer

    Identical to calling :<= and :>= in sequence (order is irrelevant), e.g. consumer :<= producer then consumer :>= producer

    Symbol reference:

    • ':' is the consumer side
    • '=' is the producer side
    • '<' means to connect from producer to consumer
    • '>' means to connect from consumer to producer

    The following restrictions apply:

    • The Chisel type of consumer and producer must be the "same shape" recursively:
      • All ground types are the same (UInt and UInt are same, SInt and UInt are not), but widths can be different (implicit trunction/padding occurs)
      • All vector types are the same length
      • All bundle types have the same member names, but the flips of members can be different between producer and consumer
    • The leaf members that are ultimately assigned to, must be assignable. This means they cannot be module inputs or instance outputs. - An additional type restriction is that all relative orientations of consumer and producer must match exactly.

    Additional notes:

    • Connecting two wires of util.DecoupledIO chisel type would connect bits and valid from producer to consumer, and ready from consumer to producer.
    • If the types of consumer and producer also have identical relative flips, then we can emit FIRRTL.<= as it is a stricter version of chisel3.:<>=
    • "turk-duck-en" is a dish where a turkey is stuffed with a duck, which is stuffed with a chicken; :<>= is a := stuffed with a <>
    Implicit
    This member is added by an implicit conversion from Element toConnectableDefault[Element] performed by method ConnectableDefault in chisel3.Data.
    Definition Classes
    ConnectableOpExtension
  14. final def :=(that: => Data)(implicit sourceInfo: SourceInfo, connectionCompileOptions: CompileOptions): Unit

    The "strong connect" operator.

    The "strong connect" operator.

    For chisel3._, this operator is mono-directioned; all sub-elements of this will be driven by sub-elements of that.

    • Equivalent to this :#= that

    For Chisel._, this operator connections bi-directionally via emitting the FIRRTL.<=

    • Equivalent to this :<>= that
    that

    the Data to connect from

    Definition Classes
    Data
  15. final def :>=(producer: DontCare.type)(implicit sourceInfo: SourceInfo): Unit

    The "flipped connection operator", or the "backpressure connection operator" between a producer and consumer.

    The "flipped connection operator", or the "backpressure connection operator" between a producer and consumer.

    For consumer :>= producer, each of producer's leaf members which are flipped with respect to producer are driven from the corresponding consumer leaf member Only producer's leaf/branch alignments influence the connection.

    Symbol reference:

    • ':' is the consumer side
    • '=' is the producer side
    • '>' means to connect from consumer to producer

    The following restrictions apply:

    • The Chisel type of consumer and producer must be the "same shape" recursively:
      • All ground types are the same (UInt and UInt are same, SInt and UInt are not), but widths can be different (implicit trunction/padding occurs)
      • All vector types are the same length
      • All bundle types have the same member names, but the flips of members can be different between producer and consumer
    • The leaf members that are ultimately assigned to, must be assignable. This means they cannot be module inputs or instance outputs.

    Additional notes:

    • Connecting two util.DecoupledIO's would connect ready from consumer to producer, but leave bits and valid unconnected
    producer

    the right-hand-side of the connection; will always be driven by leaf connections, and never drive leaf connections ("flipped connection")

    Implicit
    This member is added by an implicit conversion from Element toConnectableDefault[Element] performed by method ConnectableDefault in chisel3.Data.
    Definition Classes
    ConnectableOpExtension
  16. final def :>=[S <: Data](producer: connectable.Connectable[S])(implicit evidence: =:=[Element, S], sourceInfo: SourceInfo): Unit

    The "flipped connection operator", or the "backpressure connection operator" between a producer and consumer.

    The "flipped connection operator", or the "backpressure connection operator" between a producer and consumer.

    For consumer :>= producer, each of producer's leaf members which are flipped with respect to producer are driven from the corresponding consumer leaf member Only producer's leaf/branch alignments influence the connection.

    Symbol reference:

    • ':' is the consumer side
    • '=' is the producer side
    • '>' means to connect from consumer to producer

    The following restrictions apply:

    • The Chisel type of consumer and producer must be the "same shape" recursively:
      • All ground types are the same (UInt and UInt are same, SInt and UInt are not), but widths can be different (implicit trunction/padding occurs)
      • All vector types are the same length
      • All bundle types have the same member names, but the flips of members can be different between producer and consumer
    • The leaf members that are ultimately assigned to, must be assignable. This means they cannot be module inputs or instance outputs.

    Additional notes:

    • Connecting two util.DecoupledIO's would connect ready from consumer to producer, but leave bits and valid unconnected
    producer

    the right-hand-side of the connection; will always be driven by leaf connections, and never drive leaf connections ("flipped connection")

    Implicit
    This member is added by an implicit conversion from Element toConnectableDefault[Element] performed by method ConnectableDefault in chisel3.Data.
    Definition Classes
    ConnectableOpExtension
  17. final def :>=[S <: Data](lProducer: => S)(implicit evidence: =:=[Element, S], sourceInfo: SourceInfo): Unit

    The "flipped connection operator", or the "backpressure connection operator" between a producer and consumer.

    The "flipped connection operator", or the "backpressure connection operator" between a producer and consumer.

    For consumer :>= producer, each of producer's leaf members which are flipped with respect to producer are driven from the corresponding consumer leaf member Only producer's leaf/branch alignments influence the connection.

    Symbol reference:

    • ':' is the consumer side
    • '=' is the producer side
    • '>' means to connect from consumer to producer

    The following restrictions apply:

    • The Chisel type of consumer and producer must be the "same shape" recursively:
      • All ground types are the same (UInt and UInt are same, SInt and UInt are not), but widths can be different (implicit trunction/padding occurs)
      • All vector types are the same length
      • All bundle types have the same member names, but the flips of members can be different between producer and consumer
    • The leaf members that are ultimately assigned to, must be assignable. This means they cannot be module inputs or instance outputs.

    Additional notes:

    • Connecting two util.DecoupledIO's would connect ready from consumer to producer, but leave bits and valid unconnected
    Implicit
    This member is added by an implicit conversion from Element toConnectableDefault[Element] performed by method ConnectableDefault in chisel3.Data.
    Definition Classes
    ConnectableOpExtension
  18. final def <>(that: => Data)(implicit sourceInfo: SourceInfo, connectionCompileOptions: CompileOptions): Unit

    The "bulk connect operator", assigning elements in this Vec from elements in a Vec.

    The "bulk connect operator", assigning elements in this Vec from elements in a Vec.

    For chisel3._, uses the chisel3.internal.BiConnect algorithm; sub-elements of that may end up driving sub-elements of this

    • Complicated semantics, hard to write quickly, will likely be deprecated in the future

    For Chisel._, emits the FIRRTL.<- operator

    • Equivalent to this :<>= that without the restrictions that bundle field names and vector sizes must match
    that

    the Data to connect from

    Definition Classes
    Data
  19. final def ==(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  20. def ===(rhs: Element): Bool

    Dynamic recursive equality operator for generic Data

    Dynamic recursive equality operator for generic Data

    rhs

    a hardware Data to compare lhs to

    returns

    a hardware Bool asserted if lhs is equal to rhs

    Implicit
    This member is added by an implicit conversion from Element toDataEquality[Element] performed by method DataEquality in chisel3.Data.
    Definition Classes
    DataEquality
    Exceptions thrown

    ChiselException when lhs and rhs are different types during elaboration time

  21. final def asInstanceOf[T0]: T0
    Definition Classes
    Any
  22. macro def asTypeOf[T <: Data](that: T): T

    Does a reinterpret cast of the bits in this node into the format that provides.

    Does a reinterpret cast of the bits in this node into the format that provides. Returns a new Wire of that type. Does not modify existing nodes.

    x.asTypeOf(that) performs the inverse operation of x := that.toBits.

    Definition Classes
    Data
    Note

    bit widths are NOT checked, may pad or drop bits from input

    ,

    that should have known widths

  23. final macro def asUInt: UInt

    Reinterpret cast to UInt.

    Reinterpret cast to UInt.

    Definition Classes
    Data
    Note

    value not guaranteed to be preserved: for example, a SInt of width 3 and value -1 (0b111) would become an UInt with value 7

    ,

    Aggregates are recursively packed with the first element appearing in the least-significant bits of the result.

  24. def autoSeed(name: String): Element.this.type

    Takes the last seed suggested.

    Takes the last seed suggested. Multiple calls to this function will take the last given seed, unless this HasId is a module port (see overridden method in Data.scala).

    If the final computed name conflicts with the final name of another signal, the final name may get uniquified by appending a digit at the end of the name.

    Is a lower priority than suggestName, in that regardless of whether autoSeed was called, suggestName will always take precedence if it was called.

    returns

    this object

    Definition Classes
    Data → HasId
  25. val base: Element
    Implicit
    This member is added by an implicit conversion from Element toConnectable[Element] performed by method toConnectableDefault in chisel3.Data.
    Definition Classes
    Connectable
  26. def binding: Option[Binding]
    Attributes
    protected[chisel3]
    Definition Classes
    Data
  27. def binding_=(target: Binding): Unit
    Attributes
    protected
    Definition Classes
    Data
  28. def circuitName: String
    Attributes
    protected
    Definition Classes
    HasId
  29. def clone(): AnyRef
    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws(classOf[java.lang.CloneNotSupportedException]) @native() @HotSpotIntrinsicCandidate()
  30. def do_asTypeOf[T <: Data](that: T)(implicit sourceInfo: SourceInfo, compileOptions: CompileOptions): T

    Definition Classes
    Data
  31. def ensuring(cond: (Element) => Boolean, msg: => Any): Element
    Implicit
    This member is added by an implicit conversion from Element toEnsuring[Element] performed by method Ensuring in scala.Predef.
    Definition Classes
    Ensuring
  32. def ensuring(cond: (Element) => Boolean): Element
    Implicit
    This member is added by an implicit conversion from Element toEnsuring[Element] performed by method Ensuring in scala.Predef.
    Definition Classes
    Ensuring
  33. def ensuring(cond: Boolean, msg: => Any): Element
    Implicit
    This member is added by an implicit conversion from Element toEnsuring[Element] performed by method Ensuring in scala.Predef.
    Definition Classes
    Ensuring
  34. def ensuring(cond: Boolean): Element
    Implicit
    This member is added by an implicit conversion from Element toEnsuring[Element] performed by method Ensuring in scala.Predef.
    Definition Classes
    Ensuring
  35. final def eq(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  36. def equals(that: Any): Boolean
    Definition Classes
    HasId → AnyRef → Any
  37. final def getClass(): Class[_ <: AnyRef]
    Definition Classes
    AnyRef → Any
    Annotations
    @native() @HotSpotIntrinsicCandidate()
  38. final def getWidth: Int

    Returns the width, in bits, if currently known.

    Returns the width, in bits, if currently known.

    Definition Classes
    Data
  39. def hasSeed: Boolean

    returns

    Whether either autoName or suggestName has been called

    Definition Classes
    HasId
  40. def hashCode(): Int
    Definition Classes
    HasId → AnyRef → Any
  41. def instanceName: String
    Definition Classes
    HasId → InstanceId
  42. final def isInstanceOf[T0]: Boolean
    Definition Classes
    Any
  43. def isLit: Boolean
    Definition Classes
    Data
  44. final def isWidthKnown: Boolean

    Returns whether the width is currently known.

    Returns whether the width is currently known.

    Definition Classes
    Data
  45. def litOption: Option[BigInt]

    If this is a literal that is representable as bits, returns the value as a BigInt.

    If this is a literal that is representable as bits, returns the value as a BigInt. If not a literal, or not representable as bits (for example, is or contains Analog), returns None.

    Definition Classes
    ElementData
  46. def litValue: BigInt

    Returns the literal value if this is a literal that is representable as bits, otherwise crashes.

    Returns the literal value if this is a literal that is representable as bits, otherwise crashes.

    Definition Classes
    Data
  47. def name: String
  48. final def ne(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  49. def notSpecial: Boolean

    True if no members are waived or squeezed

    True if no members are waived or squeezed

    Implicit
    This member is added by an implicit conversion from Element toConnectable[Element] performed by method toConnectableDefault in chisel3.Data.
    Definition Classes
    Connectable
  50. final def notify(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native() @HotSpotIntrinsicCandidate()
  51. final def notifyAll(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native() @HotSpotIntrinsicCandidate()
  52. def parentModName: String
    Definition Classes
    HasId → InstanceId
  53. def parentPathName: String
    Definition Classes
    HasId → InstanceId
  54. def pathName: String
    Definition Classes
    HasId → InstanceId
  55. def squeeze(members: (Element) => Data*): connectable.Connectable[Element]

    Select members of base to squeeze

    Select members of base to squeeze

    members

    functions given the base return a member to squeeze

    Implicit
    This member is added by an implicit conversion from Element toConnectable[Element] performed by method toConnectableDefault in chisel3.Data.
    Definition Classes
    Connectable
  56. def squeeze: connectable.Connectable[Element]

    Adds base to squeezes

    Adds base to squeezes

    Implicit
    This member is added by an implicit conversion from Element toConnectable[Element] performed by method toConnectableDefault in chisel3.Data.
    Definition Classes
    Connectable
  57. def squeezeAll: connectable.Connectable[Element]

    Squeeze all members of base

    Squeeze all members of base

    Implicit
    This member is added by an implicit conversion from Element toConnectable[Element] performed by method toConnectableDefault in chisel3.Data.
    Definition Classes
    Connectable
  58. def squeezeEach[S <: Data](pf: PartialFunction[Data, Seq[Data]]): connectable.Connectable[Element]

    Programmatically select members of base to squeeze

    Programmatically select members of base to squeeze

    Implicit
    This member is added by an implicit conversion from Element toConnectable[Element] performed by method toConnectableDefault in chisel3.Data.
    Definition Classes
    Connectable
  59. def suggestName(seed: => String): Element.this.type

    Takes the first seed suggested.

    Takes the first seed suggested. Multiple calls to this function will be ignored. If the final computed name conflicts with another name, it may get uniquified by appending a digit at the end.

    Is a higher priority than autoSeed, in that regardless of whether autoSeed was called, suggestName will always take precedence.

    seed

    The seed for the name of this component

    returns

    this object

    Definition Classes
    HasId
  60. final def synchronized[T0](arg0: => T0): T0
    Definition Classes
    AnyRef
  61. final def toAbsoluteTarget: ReferenceTarget

    Returns a FIRRTL IsMember that refers to the absolute path to this object in the elaborated hardware graph

    Returns a FIRRTL IsMember that refers to the absolute path to this object in the elaborated hardware graph

    Definition Classes
    NamedComponent → InstanceId
  62. final def toNamed: ComponentName

    Returns a FIRRTL ComponentName that references this object

    Returns a FIRRTL ComponentName that references this object

    Definition Classes
    NamedComponent → InstanceId
    Note

    Should not be called until circuit elaboration is complete

  63. def toString(): String
    Definition Classes
    AnyRef → Any
  64. final def toTarget: ReferenceTarget

    Returns a FIRRTL ReferenceTarget that references this object

    Returns a FIRRTL ReferenceTarget that references this object

    Definition Classes
    NamedComponent → InstanceId
    Note

    Should not be called until circuit elaboration is complete

  65. final def wait(arg0: Long, arg1: Int): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws(classOf[java.lang.InterruptedException])
  66. final def wait(arg0: Long): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws(classOf[java.lang.InterruptedException]) @native()
  67. final def wait(): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws(classOf[java.lang.InterruptedException])
  68. def waive(members: (Element) => Data*): connectable.Connectable[Element]

    Select members of base to waive

    Select members of base to waive

    members

    functions given the base return a member to waive

    Implicit
    This member is added by an implicit conversion from Element toConnectable[Element] performed by method toConnectableDefault in chisel3.Data.
    Definition Classes
    Connectable
  69. def waiveAll: connectable.Connectable[Element]

    Waive all members of base

    Waive all members of base

    Implicit
    This member is added by an implicit conversion from Element toConnectable[Element] performed by method toConnectableDefault in chisel3.Data.
    Definition Classes
    Connectable
  70. def waiveAllAs[S <: Data](implicit ev: <:<[Element, S]): connectable.Connectable[S]

    Waive all members of base and static cast to a new type

    Waive all members of base and static cast to a new type

    Implicit
    This member is added by an implicit conversion from Element toConnectable[Element] performed by method toConnectableDefault in chisel3.Data.
    Definition Classes
    Connectable
  71. def waiveAs[S <: Data](members: (Element) => Data*)(implicit ev: <:<[Element, S]): connectable.Connectable[S]

    Select members of base to waive and static cast to a new type

    Select members of base to waive and static cast to a new type

    members

    functions given the base return a member to waive

    Implicit
    This member is added by an implicit conversion from Element toConnectable[Element] performed by method toConnectableDefault in chisel3.Data.
    Definition Classes
    Connectable
  72. def waiveEach[S <: Data](pf: PartialFunction[Data, Seq[Data]])(implicit ev: <:<[Element, S]): connectable.Connectable[S]

    Programmatically select members of base to waive and static cast to a new type

    Programmatically select members of base to waive and static cast to a new type

    Implicit
    This member is added by an implicit conversion from Element toConnectable[Element] performed by method toConnectableDefault in chisel3.Data.
    Definition Classes
    Connectable
  73. def widthKnown: Boolean
  74. final def widthOption: Option[Int]

    Returns Some(width) if the width is known, else None.

    Returns Some(width) if the width is known, else None.

    Definition Classes
    Data

Deprecated Value Members

  1. def finalize(): Unit
    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws(classOf[java.lang.Throwable]) @Deprecated
    Deprecated
  2. def formatted(fmtstr: String): String
    Implicit
    This member is added by an implicit conversion from Element toStringFormat[Element] performed by method StringFormat in scala.Predef.
    Definition Classes
    StringFormat
    Annotations
    @deprecated @inline()
    Deprecated

    (Since version 2.12.16) Use formatString.format(value) instead of value.formatted(formatString), or use the f"" string interpolator. In Java 15 and later, formatted resolves to the new method in String which has reversed parameters.

  3. def [B](y: B): (Element, B)
    Implicit
    This member is added by an implicit conversion from Element toArrowAssoc[Element] performed by method ArrowAssoc in scala.Predef.
    Definition Classes
    ArrowAssoc
    Annotations
    @deprecated
    Deprecated

    (Since version 2.13.0) Use -> instead. If you still wish to display it as one character, consider using a font with programming ligatures such as Fira Code.

Inherited from Data

Inherited from SourceInfoDoc

Inherited from NamedComponent

Inherited from HasId

Inherited from InstanceId

Inherited from AnyRef

Inherited from Any

Inherited by implicit conversion DataEquality fromElement to DataEquality[Element]

Inherited by implicit conversion toConnectableDefault fromElement to Connectable[Element]

Inherited by implicit conversion ConnectableDefault fromElement to ConnectableDefault[Element]

Inherited by implicit conversion any2stringadd fromElement to any2stringadd[Element]

Inherited by implicit conversion StringFormat fromElement to StringFormat[Element]

Inherited by implicit conversion Ensuring fromElement to Ensuring[Element]

Inherited by implicit conversion ArrowAssoc fromElement to ArrowAssoc[Element]

connection

Ungrouped

SourceInfoTransformMacro

These internal methods are not part of the public-facing API!

The equivalent public-facing methods do not have the do_ prefix or have the same name. Use and look at the documentation for those. If you want left shift, use <<, not do_<<. If you want conversion to a Seq of Bools look at the asBools above, not the one below. Users can safely ignore every method in this group!

🐉🐉🐉 Here be dragons... 🐉🐉🐉

These do_X methods are used to enable both implicit passing of SourceInfo and chisel3.CompileOptions while also supporting chained apply methods. In effect all "normal" methods that you, as a user, will use in your designs, are converted to their "hidden", do_*, via macro transformations. Without using macros here, only one of the above wanted behaviors is allowed (implicit passing and chained applies)---the compiler interprets a chained apply as an explicit 'implicit' argument and will throw type errors.

The "normal", public-facing methods then take no SourceInfo. However, a macro transforms this public-facing method into a call to an internal, hidden do_* that takes an explicit SourceInfo by inserting an implicitly[SourceInfo] as the explicit argument.