Uses of Class
org.deeplearning4j.nn.workspace.LayerWorkspaceMgr
-
-
Uses of LayerWorkspaceMgr in org.deeplearning4j.nn.api
Methods in org.deeplearning4j.nn.api with parameters of type LayerWorkspaceMgr Modifier and Type Method Description INDArrayLayer. activate(boolean training, LayerWorkspaceMgr workspaceMgr)Perform forward pass and return the activations array with the last set inputINDArrayLayer. activate(INDArray input, boolean training, LayerWorkspaceMgr mgr)Perform forward pass and return the activations array with the specified inputPair<Gradient,INDArray>Layer. backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)Calculate the gradient relative to the error in the next layervoidModel. computeGradientAndScore(LayerWorkspaceMgr workspaceMgr)Update the scorevoidModel. fit(INDArray data, LayerWorkspaceMgr workspaceMgr)Fit the model to the given datavoidLayer. setInput(INDArray input, LayerWorkspaceMgr workspaceMgr)Set the layer input.voidUpdater. update(Trainable layer, Gradient gradient, int iteration, int epoch, int miniBatchSize, LayerWorkspaceMgr workspaceMgr)Updater: updates the model -
Uses of LayerWorkspaceMgr in org.deeplearning4j.nn.api.layers
Methods in org.deeplearning4j.nn.api.layers with parameters of type LayerWorkspaceMgr Modifier and Type Method Description doubleIOutputLayer. computeScore(double fullNetworkRegScore, boolean training, LayerWorkspaceMgr workspaceMgr)Compute score after labels and input have been set.INDArrayIOutputLayer. computeScoreForExamples(double fullNetworkRegScore, LayerWorkspaceMgr workspaceMgr)Compute the score for each example individually, after labels and input have been set.INDArrayRecurrentLayer. rnnActivateUsingStoredState(INDArray input, boolean training, boolean storeLastForTBPTT, LayerWorkspaceMgr workspaceMg)Similar to rnnTimeStep, this method is used for activations using the state stored in the stateMap as the initialization.INDArrayRecurrentLayer. rnnTimeStep(INDArray input, LayerWorkspaceMgr workspaceMgr)Do one or more time steps using the previous time step state stored in stateMap.
Can be used to efficiently do forward pass one or n-steps at a time (instead of doing forward pass always from t=0)
If stateMap is empty, default initialization (usually zeros) is used
Implementations also update stateMap at the end of this methodPair<Gradient,INDArray>RecurrentLayer. tbpttBackpropGradient(INDArray epsilon, int tbpttBackLength, LayerWorkspaceMgr workspaceMgr)Truncated BPTT equivalent of Layer.backpropGradient(). -
Uses of LayerWorkspaceMgr in org.deeplearning4j.nn.conf
Methods in org.deeplearning4j.nn.conf with parameters of type LayerWorkspaceMgr Modifier and Type Method Description INDArrayInputPreProcessor. backprop(INDArray output, int miniBatchSize, LayerWorkspaceMgr workspaceMgr)Reverse the preProcess during backprop.INDArrayInputPreProcessor. preProcess(INDArray input, int miniBatchSize, LayerWorkspaceMgr workspaceMgr)Pre preProcess input/activations for a multi layer network -
Uses of LayerWorkspaceMgr in org.deeplearning4j.nn.conf.dropout
Methods in org.deeplearning4j.nn.conf.dropout with parameters of type LayerWorkspaceMgr Modifier and Type Method Description INDArrayAlphaDropout. applyDropout(INDArray inputActivations, INDArray output, int iteration, int epoch, LayerWorkspaceMgr workspaceMgr)INDArrayDropout. applyDropout(INDArray inputActivations, INDArray output, int iteration, int epoch, LayerWorkspaceMgr workspaceMgr)INDArrayGaussianDropout. applyDropout(INDArray inputActivations, INDArray output, int iteration, int epoch, LayerWorkspaceMgr workspaceMgr)INDArrayGaussianNoise. applyDropout(INDArray inputActivations, INDArray output, int iteration, int epoch, LayerWorkspaceMgr workspaceMgr)INDArrayIDropout. applyDropout(INDArray inputActivations, INDArray resultArray, int iteration, int epoch, LayerWorkspaceMgr workspaceMgr)INDArraySpatialDropout. applyDropout(INDArray inputActivations, INDArray output, int iteration, int epoch, LayerWorkspaceMgr workspaceMgr) -
Uses of LayerWorkspaceMgr in org.deeplearning4j.nn.conf.preprocessor
Methods in org.deeplearning4j.nn.conf.preprocessor with parameters of type LayerWorkspaceMgr Modifier and Type Method Description INDArrayCnn3DToFeedForwardPreProcessor. backprop(INDArray epsilons, int miniBatchSize, LayerWorkspaceMgr workspaceMgr)INDArrayCnnToFeedForwardPreProcessor. backprop(INDArray epsilons, int miniBatchSize, LayerWorkspaceMgr workspaceMgr)INDArrayCnnToRnnPreProcessor. backprop(INDArray output, int miniBatchSize, LayerWorkspaceMgr workspaceMgr)INDArrayComposableInputPreProcessor. backprop(INDArray output, int miniBatchSize, LayerWorkspaceMgr workspaceMgr)INDArrayFeedForwardToCnn3DPreProcessor. backprop(INDArray epsilons, int miniBatchSize, LayerWorkspaceMgr workspaceMgr)INDArrayFeedForwardToCnnPreProcessor. backprop(INDArray epsilons, int miniBatchSize, LayerWorkspaceMgr workspaceMgr)INDArrayFeedForwardToRnnPreProcessor. backprop(INDArray output, int miniBatchSize, LayerWorkspaceMgr workspaceMgr)INDArrayRnnToCnnPreProcessor. backprop(INDArray output, int miniBatchSize, LayerWorkspaceMgr workspaceMgr)INDArrayRnnToFeedForwardPreProcessor. backprop(INDArray output, int miniBatchSize, LayerWorkspaceMgr workspaceMgr)INDArrayCnn3DToFeedForwardPreProcessor. preProcess(INDArray input, int miniBatchSize, LayerWorkspaceMgr workspaceMgr)INDArrayCnnToFeedForwardPreProcessor. preProcess(INDArray input, int miniBatchSize, LayerWorkspaceMgr workspaceMgr)INDArrayCnnToRnnPreProcessor. preProcess(INDArray input, int miniBatchSize, LayerWorkspaceMgr workspaceMgr)INDArrayComposableInputPreProcessor. preProcess(INDArray input, int miniBatchSize, LayerWorkspaceMgr workspaceMgr)INDArrayFeedForwardToCnn3DPreProcessor. preProcess(INDArray input, int miniBatchSize, LayerWorkspaceMgr workspaceMgr)INDArrayFeedForwardToCnnPreProcessor. preProcess(INDArray input, int miniBatchSize, LayerWorkspaceMgr workspaceMgr)INDArrayFeedForwardToRnnPreProcessor. preProcess(INDArray input, int miniBatchSize, LayerWorkspaceMgr workspaceMgr)INDArrayRnnToCnnPreProcessor. preProcess(INDArray input, int miniBatchSize, LayerWorkspaceMgr workspaceMgr)INDArrayRnnToFeedForwardPreProcessor. preProcess(INDArray input, int miniBatchSize, LayerWorkspaceMgr workspaceMgr) -
Uses of LayerWorkspaceMgr in org.deeplearning4j.nn.conf.weightnoise
Methods in org.deeplearning4j.nn.conf.weightnoise with parameters of type LayerWorkspaceMgr Modifier and Type Method Description INDArrayDropConnect. getParameter(Layer layer, String paramKey, int iteration, int epoch, boolean train, LayerWorkspaceMgr workspaceMgr)INDArrayIWeightNoise. getParameter(Layer layer, String paramKey, int iteration, int epoch, boolean train, LayerWorkspaceMgr workspaceMgr)Get the parameter, after applying weight noiseINDArrayWeightNoise. getParameter(Layer layer, String paramKey, int iteration, int epoch, boolean train, LayerWorkspaceMgr workspaceMgr) -
Uses of LayerWorkspaceMgr in org.deeplearning4j.nn.graph
Methods in org.deeplearning4j.nn.graph with parameters of type LayerWorkspaceMgr Modifier and Type Method Description voidComputationGraph. computeGradientAndScore(LayerWorkspaceMgr workspaceMgr)protected voidComputationGraph. doTruncatedBPTT(INDArray[] inputs, INDArray[] labels, INDArray[] featureMasks, INDArray[] labelMasks, LayerWorkspaceMgr workspaceMgr)Fit the network using truncated BPTTvoidComputationGraph. fit(INDArray data, LayerWorkspaceMgr workspaceMgr)protected voidComputationGraph. validateArrayWorkspaces(LayerWorkspaceMgr mgr, INDArray array, ArrayType arrayType, String vertexName, boolean isInputVertex, String op) -
Uses of LayerWorkspaceMgr in org.deeplearning4j.nn.graph.vertex
Methods in org.deeplearning4j.nn.graph.vertex with parameters of type LayerWorkspaceMgr Modifier and Type Method Description Pair<Gradient,INDArray[]>BaseWrapperVertex. doBackward(boolean tbptt, LayerWorkspaceMgr workspaceMgr)Pair<Gradient,INDArray[]>GraphVertex. doBackward(boolean tbptt, LayerWorkspaceMgr workspaceMgr)Do backward passINDArrayBaseWrapperVertex. doForward(boolean training, LayerWorkspaceMgr workspaceMgr)INDArrayGraphVertex. doForward(boolean training, LayerWorkspaceMgr workspaceMgr)Do forward pass using the stored inputsvoidBaseGraphVertex. setInput(int inputNumber, INDArray input, LayerWorkspaceMgr workspaceMgr)voidBaseWrapperVertex. setInput(int inputNumber, INDArray input, LayerWorkspaceMgr workspaceMgr)voidGraphVertex. setInput(int inputNumber, INDArray input, LayerWorkspaceMgr workspaceMgr)Set the input activations. -
Uses of LayerWorkspaceMgr in org.deeplearning4j.nn.graph.vertex.impl
Methods in org.deeplearning4j.nn.graph.vertex.impl with parameters of type LayerWorkspaceMgr Modifier and Type Method Description voidLayerVertex. applyPreprocessorAndSetInput(LayerWorkspaceMgr workspaceMgr)doubleLayerVertex. computeScore(double r, boolean training, LayerWorkspaceMgr workspaceMgr)INDArrayLayerVertex. computeScoreForExamples(double r, LayerWorkspaceMgr workspaceMgr)Pair<Gradient,INDArray[]>ElementWiseVertex. doBackward(boolean tbptt, LayerWorkspaceMgr workspaceMgr)Pair<Gradient,INDArray[]>InputVertex. doBackward(boolean tbptt, LayerWorkspaceMgr workspaceMgr)Pair<Gradient,INDArray[]>L2NormalizeVertex. doBackward(boolean tbptt, LayerWorkspaceMgr workspaceMgr)Pair<Gradient,INDArray[]>L2Vertex. doBackward(boolean tbptt, LayerWorkspaceMgr workspaceMgr)Pair<Gradient,INDArray[]>LayerVertex. doBackward(boolean tbptt, LayerWorkspaceMgr workspaceMgr)Pair<Gradient,INDArray[]>MergeVertex. doBackward(boolean tbptt, LayerWorkspaceMgr workspaceMgr)Pair<Gradient,INDArray[]>PoolHelperVertex. doBackward(boolean tbptt, LayerWorkspaceMgr workspaceMgr)Pair<Gradient,INDArray[]>PreprocessorVertex. doBackward(boolean tbptt, LayerWorkspaceMgr workspaceMgr)Pair<Gradient,INDArray[]>ReshapeVertex. doBackward(boolean tbptt, LayerWorkspaceMgr workspaceMgr)Pair<Gradient,INDArray[]>ScaleVertex. doBackward(boolean tbptt, LayerWorkspaceMgr workspaceMgr)Pair<Gradient,INDArray[]>ShiftVertex. doBackward(boolean tbptt, LayerWorkspaceMgr workspaceMgr)Pair<Gradient,INDArray[]>StackVertex. doBackward(boolean tbptt, LayerWorkspaceMgr workspaceMgr)Pair<Gradient,INDArray[]>SubsetVertex. doBackward(boolean tbptt, LayerWorkspaceMgr workspaceMgr)Pair<Gradient,INDArray[]>UnstackVertex. doBackward(boolean tbptt, LayerWorkspaceMgr workspaceMgr)INDArrayElementWiseVertex. doForward(boolean training, LayerWorkspaceMgr workspaceMgr)INDArrayInputVertex. doForward(boolean training, LayerWorkspaceMgr workspaceMgr)INDArrayL2NormalizeVertex. doForward(boolean training, LayerWorkspaceMgr workspaceMgr)INDArrayL2Vertex. doForward(boolean training, LayerWorkspaceMgr workspaceMgr)INDArrayLayerVertex. doForward(boolean training, LayerWorkspaceMgr workspaceMgr)INDArrayMergeVertex. doForward(boolean training, LayerWorkspaceMgr workspaceMgr)INDArrayPoolHelperVertex. doForward(boolean training, LayerWorkspaceMgr workspaceMgr)INDArrayPreprocessorVertex. doForward(boolean training, LayerWorkspaceMgr workspaceMgr)INDArrayReshapeVertex. doForward(boolean training, LayerWorkspaceMgr workspaceMgr)INDArrayScaleVertex. doForward(boolean training, LayerWorkspaceMgr workspaceMgr)INDArrayShiftVertex. doForward(boolean training, LayerWorkspaceMgr workspaceMgr)INDArrayStackVertex. doForward(boolean training, LayerWorkspaceMgr workspaceMgr)INDArraySubsetVertex. doForward(boolean training, LayerWorkspaceMgr workspaceMgr)INDArrayUnstackVertex. doForward(boolean training, LayerWorkspaceMgr workspaceMgr)voidLayerVertex. setInput(int inputNumber, INDArray input, LayerWorkspaceMgr workspaceMgr) -
Uses of LayerWorkspaceMgr in org.deeplearning4j.nn.graph.vertex.impl.rnn
Methods in org.deeplearning4j.nn.graph.vertex.impl.rnn with parameters of type LayerWorkspaceMgr Modifier and Type Method Description Pair<Gradient,INDArray[]>DuplicateToTimeSeriesVertex. doBackward(boolean tbptt, LayerWorkspaceMgr workspaceMgr)Pair<Gradient,INDArray[]>LastTimeStepVertex. doBackward(boolean tbptt, LayerWorkspaceMgr workspaceMgr)Pair<Gradient,INDArray[]>ReverseTimeSeriesVertex. doBackward(boolean tbptt, LayerWorkspaceMgr workspaceMgr)INDArrayDuplicateToTimeSeriesVertex. doForward(boolean training, LayerWorkspaceMgr workspaceMgr)INDArrayLastTimeStepVertex. doForward(boolean training, LayerWorkspaceMgr workspaceMgr)INDArrayReverseTimeSeriesVertex. doForward(boolean training, LayerWorkspaceMgr workspaceMgr) -
Uses of LayerWorkspaceMgr in org.deeplearning4j.nn.layers
Methods in org.deeplearning4j.nn.layers with parameters of type LayerWorkspaceMgr Modifier and Type Method Description INDArrayAbstractLayer. activate(INDArray input, boolean training, LayerWorkspaceMgr workspaceMgr)INDArrayActivationLayer. activate(boolean training, LayerWorkspaceMgr mgr)INDArrayBaseLayer. activate(boolean training, LayerWorkspaceMgr workspaceMgr)INDArrayBaseOutputLayer. activate(INDArray input, boolean training, LayerWorkspaceMgr workspaceMgr)INDArrayDropoutLayer. activate(boolean training, LayerWorkspaceMgr workspaceMgr)INDArrayFrozenLayer. activate(boolean training, LayerWorkspaceMgr workspaceMgr)INDArrayFrozenLayer. activate(INDArray input, boolean training, LayerWorkspaceMgr workspaceMgr)INDArrayFrozenLayerWithBackprop. activate(boolean training, LayerWorkspaceMgr workspaceMgr)INDArrayFrozenLayerWithBackprop. activate(INDArray input, boolean training, LayerWorkspaceMgr workspaceMgr)INDArrayLossLayer. activate(boolean training, LayerWorkspaceMgr workspaceMgr)INDArrayLossLayer. activate(INDArray input, boolean training, LayerWorkspaceMgr workspaceMgr)INDArrayRepeatVector. activate(boolean training, LayerWorkspaceMgr workspaceMgr)protected voidAbstractLayer. applyDropOutIfNecessary(boolean training, LayerWorkspaceMgr workspaceMgr)Pair<Gradient,INDArray>ActivationLayer. backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)Pair<Gradient,INDArray>BaseLayer. backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)Pair<Gradient,INDArray>BaseOutputLayer. backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)Pair<Gradient,INDArray>BasePretrainNetwork. backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)Pair<Gradient,INDArray>DropoutLayer. backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)Pair<Gradient,INDArray>FrozenLayer. backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)Pair<Gradient,INDArray>FrozenLayerWithBackprop. backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)Pair<Gradient,INDArray>LossLayer. backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)Pair<Gradient,INDArray>RepeatVector. backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)voidAbstractLayer. computeGradientAndScore(LayerWorkspaceMgr workspaceMgr)voidBaseLayer. computeGradientAndScore(LayerWorkspaceMgr workspaceMgr)voidBaseOutputLayer. computeGradientAndScore(LayerWorkspaceMgr workspaceMgr)voidFrozenLayer. computeGradientAndScore(LayerWorkspaceMgr workspaceMgr)voidFrozenLayerWithBackprop. computeGradientAndScore(LayerWorkspaceMgr workspaceMgr)voidLossLayer. computeGradientAndScore(LayerWorkspaceMgr workspaceMgr)doubleBaseOutputLayer. computeScore(double fullNetRegTerm, boolean training, LayerWorkspaceMgr workspaceMgr)Compute score after labels and input have been set.doubleLossLayer. computeScore(double fullNetRegTerm, boolean training, LayerWorkspaceMgr workspaceMgr)Compute score after labels and input have been set.INDArrayBaseOutputLayer. computeScoreForExamples(double fullNetRegTerm, LayerWorkspaceMgr workspaceMgr)Compute the score for each example individually, after labels and input have been set.INDArrayLossLayer. computeScoreForExamples(double fullNetRegTerm, LayerWorkspaceMgr workspaceMgr)Compute the score for each example individually, after labels and input have been set.voidAbstractLayer. fit(INDArray input, LayerWorkspaceMgr workspaceMgr)voidBaseLayer. fit(INDArray input, LayerWorkspaceMgr workspaceMgr)voidBaseOutputLayer. fit(INDArray data, LayerWorkspaceMgr workspaceMgr)voidDropoutLayer. fit(INDArray input, LayerWorkspaceMgr workspaceMgr)voidFrozenLayer. fit(INDArray data, LayerWorkspaceMgr workspaceMgr)voidFrozenLayerWithBackprop. fit(INDArray data, LayerWorkspaceMgr workspaceMgr)voidLossLayer. fit(INDArray input, LayerWorkspaceMgr workspaceMgr)voidRepeatVector. fit(INDArray input, LayerWorkspaceMgr workspaceMgr)protected abstract INDArrayBaseOutputLayer. getLabels2d(LayerWorkspaceMgr workspaceMgr, ArrayType arrayType)protected INDArrayOutputLayer. getLabels2d(LayerWorkspaceMgr workspaceMgr, ArrayType arrayType)protected INDArrayBaseLayer. getParamWithNoise(String param, boolean training, LayerWorkspaceMgr workspaceMgr)Get the parameter, after applying any weight noise (such as DropConnect) if necessary.protected INDArrayBaseLayer. preOutput(boolean training, LayerWorkspaceMgr workspaceMgr)protected INDArrayRepeatVector. preOutput(boolean training, boolean forBackprop, LayerWorkspaceMgr workspaceMgr)protected INDArrayBaseOutputLayer. preOutput2d(boolean training, LayerWorkspaceMgr workspaceMgr)protected Pair<INDArray,INDArray>BaseLayer. preOutputWithPreNorm(boolean training, boolean forBackprop, LayerWorkspaceMgr workspaceMgr)voidAbstractLayer. setInput(INDArray input, LayerWorkspaceMgr workspaceMgr) -
Uses of LayerWorkspaceMgr in org.deeplearning4j.nn.layers.convolution
Methods in org.deeplearning4j.nn.layers.convolution with parameters of type LayerWorkspaceMgr Modifier and Type Method Description INDArrayCnn3DLossLayer. activate(boolean training, LayerWorkspaceMgr workspaceMgr)INDArrayCnnLossLayer. activate(boolean training, LayerWorkspaceMgr workspaceMgr)INDArrayConvolution1DLayer. activate(boolean training, LayerWorkspaceMgr workspaceMgr)INDArrayConvolutionLayer. activate(boolean training, LayerWorkspaceMgr workspaceMgr)INDArrayCropping1DLayer. activate(boolean training, LayerWorkspaceMgr workspaceMgr)INDArrayCropping2DLayer. activate(boolean training, LayerWorkspaceMgr workspaceMgr)INDArrayCropping3DLayer. activate(boolean training, LayerWorkspaceMgr workspaceMgr)INDArrayDeconvolution2DLayer. activate(boolean training, LayerWorkspaceMgr workspaceMgr)INDArrayDeconvolution3DLayer. activate(boolean training, LayerWorkspaceMgr workspaceMgr)INDArrayDepthwiseConvolution2DLayer. activate(boolean training, LayerWorkspaceMgr workspaceMgr)INDArraySeparableConvolution2DLayer. activate(boolean training, LayerWorkspaceMgr workspaceMgr)INDArraySpaceToBatch. activate(boolean training, LayerWorkspaceMgr workspaceMgr)INDArraySpaceToDepth. activate(boolean training, LayerWorkspaceMgr workspaceMgr)INDArrayZeroPadding1DLayer. activate(boolean training, LayerWorkspaceMgr workspaceMgr)INDArrayZeroPadding3DLayer. activate(boolean training, LayerWorkspaceMgr workspaceMgr)INDArrayZeroPaddingLayer. activate(boolean training, LayerWorkspaceMgr workspaceMgr)Pair<Gradient,INDArray>Cnn3DLossLayer. backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)Pair<Gradient,INDArray>CnnLossLayer. backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)Pair<Gradient,INDArray>Convolution1DLayer. backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)Pair<Gradient,INDArray>Convolution3DLayer. backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)Pair<Gradient,INDArray>ConvolutionHelper. backpropGradient(INDArray input, INDArray weights, INDArray bias, INDArray delta, int[] kernel, int[] strides, int[] pad, INDArray biasGradView, INDArray weightGradView, IActivation afn, ConvolutionLayer.AlgoMode mode, ConvolutionLayer.BwdFilterAlgo bwdFilterAlgo, ConvolutionLayer.BwdDataAlgo bwdDataAlgo, ConvolutionMode convolutionMode, int[] dilation, CNN2DFormat format, LayerWorkspaceMgr workspaceMgr)Pair<Gradient,INDArray>ConvolutionLayer. backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)Pair<Gradient,INDArray>Cropping1DLayer. backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)Pair<Gradient,INDArray>Cropping2DLayer. backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)Pair<Gradient,INDArray>Cropping3DLayer. backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)Pair<Gradient,INDArray>Deconvolution2DLayer. backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)Pair<Gradient,INDArray>Deconvolution3DLayer. backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)Pair<Gradient,INDArray>DepthwiseConvolution2DLayer. backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)Pair<Gradient,INDArray>SeparableConvolution2DLayer. backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)Pair<Gradient,INDArray>SpaceToBatch. backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)Pair<Gradient,INDArray>SpaceToDepth. backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)Pair<Gradient,INDArray>ZeroPadding1DLayer. backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)Pair<Gradient,INDArray>ZeroPadding3DLayer. backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)Pair<Gradient,INDArray>ZeroPaddingLayer. backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)doubleCnn3DLossLayer. computeScore(double fullNetRegTerm, boolean training, LayerWorkspaceMgr workspaceMgr)doubleCnnLossLayer. computeScore(double fullNetRegTerm, boolean training, LayerWorkspaceMgr workspaceMgr)INDArrayCnn3DLossLayer. computeScoreForExamples(double fullNetRegTerm, LayerWorkspaceMgr workspaceMgr)Compute the score for each example individually, after labels and input have been set.INDArrayCnnLossLayer. computeScoreForExamples(double fullNetRegTerm, LayerWorkspaceMgr workspaceMgr)Compute the score for each example individually, after labels and input have been set.voidConvolutionLayer. fit(INDArray input, LayerWorkspaceMgr workspaceMgr)protected Pair<INDArray,INDArray>Convolution1DLayer. preOutput(boolean training, boolean forBackprop, LayerWorkspaceMgr workspaceMgr)protected Pair<INDArray,INDArray>Convolution3DLayer. preOutput(boolean training, boolean forBackprop, LayerWorkspaceMgr workspaceMgr)INDArrayConvolution3DLayer. preOutput(boolean training, LayerWorkspaceMgr workspaceMgr)INDArrayConvolutionHelper. preOutput(INDArray input, INDArray weights, INDArray bias, int[] kernel, int[] strides, int[] pad, ConvolutionLayer.AlgoMode mode, ConvolutionLayer.FwdAlgo fwdAlgo, ConvolutionMode convolutionMode, int[] dilation, CNN2DFormat format, LayerWorkspaceMgr workspaceMgr)protected Pair<INDArray,INDArray>ConvolutionLayer. preOutput(boolean training, boolean forBackprop, LayerWorkspaceMgr workspaceMgr)PreOutput method that also returns the im2col2d array (if being called for backprop), as this can be re-used instead of being calculated again.protected Pair<INDArray,INDArray>Deconvolution2DLayer. preOutput(boolean training, boolean forBackprop, LayerWorkspaceMgr workspaceMgr)protected INDArrayDeconvolution3DLayer. preOutput(boolean training, LayerWorkspaceMgr workspaceMgr)protected Pair<INDArray,INDArray>DepthwiseConvolution2DLayer. preOutput(boolean training, boolean forBackprop, LayerWorkspaceMgr workspaceMgr)protected Pair<INDArray,INDArray>SeparableConvolution2DLayer. preOutput(boolean training, boolean forBackprop, LayerWorkspaceMgr workspaceMgr)protected INDArraySpaceToBatch. preOutput(boolean training, boolean forBackprop, LayerWorkspaceMgr workspaceMgr)protected INDArraySpaceToDepth. preOutput(boolean training, boolean forBackprop, LayerWorkspaceMgr workspaceMgr)protected Pair<INDArray,INDArray>Convolution1DLayer. preOutput4d(boolean training, boolean forBackprop, LayerWorkspaceMgr workspaceMgr)protected Pair<INDArray,INDArray>ConvolutionLayer. preOutput4d(boolean training, boolean forBackprop, LayerWorkspaceMgr workspaceMgr)preOutput4d: Used so that ConvolutionLayer subclasses (such as Convolution1DLayer) can maintain their standard non-4d preOutput method, while overriding this to return 4d activations (for use in backprop) without modifying the public API -
Uses of LayerWorkspaceMgr in org.deeplearning4j.nn.layers.convolution.subsampling
Methods in org.deeplearning4j.nn.layers.convolution.subsampling with parameters of type LayerWorkspaceMgr Modifier and Type Method Description INDArraySubsampling1DLayer. activate(boolean training, LayerWorkspaceMgr workspaceMgr)INDArraySubsampling3DLayer. activate(boolean training, LayerWorkspaceMgr workspaceMgr)INDArraySubsamplingHelper. activate(INDArray input, boolean training, int[] kernel, int[] strides, int[] pad, PoolingType poolingType, ConvolutionMode convolutionMode, int[] dilation, CNN2DFormat format, LayerWorkspaceMgr workspaceMgr)INDArraySubsamplingLayer. activate(boolean training, LayerWorkspaceMgr workspaceMgr)Pair<Gradient,INDArray>Subsampling1DLayer. backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)Pair<Gradient,INDArray>Subsampling3DLayer. backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)Pair<Gradient,INDArray>SubsamplingHelper. backpropGradient(INDArray input, INDArray epsilon, int[] kernel, int[] strides, int[] pad, PoolingType poolingType, ConvolutionMode convolutionMode, int[] dilation, CNN2DFormat format, LayerWorkspaceMgr workspaceMgr)Pair<Gradient,INDArray>SubsamplingLayer. backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)voidSubsampling3DLayer. fit(INDArray input, LayerWorkspaceMgr workspaceMgr)voidSubsamplingLayer. fit(INDArray input, LayerWorkspaceMgr workspaceMgr) -
Uses of LayerWorkspaceMgr in org.deeplearning4j.nn.layers.convolution.upsampling
Methods in org.deeplearning4j.nn.layers.convolution.upsampling with parameters of type LayerWorkspaceMgr Modifier and Type Method Description INDArrayUpsampling1D. activate(boolean training, LayerWorkspaceMgr workspaceMgr)INDArrayUpsampling2D. activate(boolean training, LayerWorkspaceMgr workspaceMgr)INDArrayUpsampling3D. activate(boolean training, LayerWorkspaceMgr workspaceMgr)Pair<Gradient,INDArray>Upsampling1D. backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)Pair<Gradient,INDArray>Upsampling2D. backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)Pair<Gradient,INDArray>Upsampling3D. backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)voidUpsampling2D. fit(INDArray input, LayerWorkspaceMgr workspaceMgr)voidUpsampling3D. fit(INDArray input, LayerWorkspaceMgr workspaceMgr)protected INDArrayUpsampling1D. preOutput(boolean training, boolean forBackprop, LayerWorkspaceMgr workspaceMgr)protected INDArrayUpsampling2D. preOutput(boolean training, boolean forBackprop, LayerWorkspaceMgr workspaceMgr)protected INDArrayUpsampling3D. preOutput(boolean training, boolean forBackprop, LayerWorkspaceMgr workspaceMgr) -
Uses of LayerWorkspaceMgr in org.deeplearning4j.nn.layers.feedforward
Methods in org.deeplearning4j.nn.layers.feedforward with parameters of type LayerWorkspaceMgr Modifier and Type Method Description INDArrayPReLU. activate(boolean training, LayerWorkspaceMgr mgr)Pair<Gradient,INDArray>PReLU. backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr) -
Uses of LayerWorkspaceMgr in org.deeplearning4j.nn.layers.feedforward.autoencoder
Methods in org.deeplearning4j.nn.layers.feedforward.autoencoder with parameters of type LayerWorkspaceMgr Modifier and Type Method Description INDArrayAutoEncoder. activate(boolean training, LayerWorkspaceMgr workspaceMgr)INDArrayAutoEncoder. activate(INDArray input, boolean training, LayerWorkspaceMgr workspaceMgr)voidAutoEncoder. computeGradientAndScore(LayerWorkspaceMgr workspaceMgr)INDArrayAutoEncoder. decode(INDArray y, LayerWorkspaceMgr workspaceMgr)INDArrayAutoEncoder. encode(INDArray v, boolean training, LayerWorkspaceMgr workspaceMgr) -
Uses of LayerWorkspaceMgr in org.deeplearning4j.nn.layers.feedforward.dense
Methods in org.deeplearning4j.nn.layers.feedforward.dense with parameters of type LayerWorkspaceMgr Modifier and Type Method Description voidDenseLayer. fit(INDArray input, LayerWorkspaceMgr workspaceMgr) -
Uses of LayerWorkspaceMgr in org.deeplearning4j.nn.layers.feedforward.elementwise
Methods in org.deeplearning4j.nn.layers.feedforward.elementwise with parameters of type LayerWorkspaceMgr Modifier and Type Method Description Pair<Gradient,INDArray>ElementWiseMultiplicationLayer. backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)INDArrayElementWiseMultiplicationLayer. preOutput(boolean training, LayerWorkspaceMgr workspaceMgr) -
Uses of LayerWorkspaceMgr in org.deeplearning4j.nn.layers.feedforward.embedding
Methods in org.deeplearning4j.nn.layers.feedforward.embedding with parameters of type LayerWorkspaceMgr Modifier and Type Method Description INDArrayEmbeddingLayer. activate(boolean training, LayerWorkspaceMgr workspaceMgr)INDArrayEmbeddingSequenceLayer. activate(boolean training, LayerWorkspaceMgr workspaceMgr)protected voidEmbeddingLayer. applyDropOutIfNecessary(boolean training, LayerWorkspaceMgr workspaceMgr)protected voidEmbeddingSequenceLayer. applyDropOutIfNecessary(boolean training, LayerWorkspaceMgr workspaceMgr)Pair<Gradient,INDArray>EmbeddingLayer. backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)Pair<Gradient,INDArray>EmbeddingSequenceLayer. backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)protected INDArrayEmbeddingLayer. preOutput(boolean training, LayerWorkspaceMgr workspaceMgr)protected INDArrayEmbeddingSequenceLayer. preOutput(boolean training, LayerWorkspaceMgr workspaceMgr) -
Uses of LayerWorkspaceMgr in org.deeplearning4j.nn.layers.mkldnn
Methods in org.deeplearning4j.nn.layers.mkldnn with parameters of type LayerWorkspaceMgr Modifier and Type Method Description INDArrayMKLDNNLocalResponseNormalizationHelper. activate(INDArray x, boolean training, double k, double n, double alpha, double beta, LayerWorkspaceMgr workspaceMgr)INDArrayMKLDNNSubsamplingHelper. activate(INDArray input, boolean training, int[] kernel, int[] strides, int[] pad, PoolingType poolingType, ConvolutionMode convolutionMode, int[] dilation, CNN2DFormat format, LayerWorkspaceMgr workspaceMgr)Pair<Gradient,INDArray>MKLDNNBatchNormHelper. backpropGradient(INDArray input, INDArray epsilon, long[] shape, INDArray gamma, INDArray beta, INDArray dGammaView, INDArray dBetaView, double eps, CNN2DFormat format, LayerWorkspaceMgr workspaceMgr)Pair<Gradient,INDArray>MKLDNNConvHelper. backpropGradient(INDArray input, INDArray weights, INDArray bias, INDArray delta, int[] kernel, int[] strides, int[] pad, INDArray biasGradView, INDArray weightGradView, IActivation afn, ConvolutionLayer.AlgoMode mode, ConvolutionLayer.BwdFilterAlgo bwdFilterAlgo, ConvolutionLayer.BwdDataAlgo bwdDataAlgo, ConvolutionMode convolutionMode, int[] dilation, CNN2DFormat format, LayerWorkspaceMgr workspaceMgr)Pair<Gradient,INDArray>MKLDNNLocalResponseNormalizationHelper. backpropGradient(INDArray input, INDArray epsilon, double k, double n, double alpha, double beta, LayerWorkspaceMgr workspaceMgr)Pair<Gradient,INDArray>MKLDNNSubsamplingHelper. backpropGradient(INDArray input, INDArray epsilon, int[] kernel, int[] strides, int[] pad, PoolingType poolingType, ConvolutionMode convolutionMode, int[] dilation, CNN2DFormat format, LayerWorkspaceMgr workspaceMgr)INDArrayMKLDNNBatchNormHelper. preOutput(INDArray x, boolean training, long[] shape, INDArray gamma, INDArray beta, INDArray mean, INDArray var, double decay, double eps, CNN2DFormat format, LayerWorkspaceMgr workspaceMgr)INDArrayMKLDNNConvHelper. preOutput(INDArray input, INDArray weights, INDArray bias, int[] kernel, int[] strides, int[] pad, ConvolutionLayer.AlgoMode mode, ConvolutionLayer.FwdAlgo fwdAlgo, ConvolutionMode convolutionMode, int[] dilation, CNN2DFormat format, LayerWorkspaceMgr workspaceMgr) -
Uses of LayerWorkspaceMgr in org.deeplearning4j.nn.layers.normalization
Methods in org.deeplearning4j.nn.layers.normalization with parameters of type LayerWorkspaceMgr Modifier and Type Method Description INDArrayBatchNormalization. activate(boolean training, LayerWorkspaceMgr workspaceMgr)INDArrayLocalResponseNormalization. activate(boolean training, LayerWorkspaceMgr workspaceMgr)INDArrayLocalResponseNormalizationHelper. activate(INDArray x, boolean training, double k, double n, double alpha, double beta, LayerWorkspaceMgr workspaceMgr)Pair<Gradient,INDArray>BatchNormalization. backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)Pair<Gradient,INDArray>BatchNormalizationHelper. backpropGradient(INDArray input, INDArray epsilon, long[] shape, INDArray gamma, INDArray beta, INDArray dGammaView, INDArray dBetaView, double eps, CNN2DFormat format, LayerWorkspaceMgr workspaceMgr)Pair<Gradient,INDArray>LocalResponseNormalization. backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)Pair<Gradient,INDArray>LocalResponseNormalizationHelper. backpropGradient(INDArray input, INDArray epsilon, double k, double n, double alpha, double beta, LayerWorkspaceMgr workspaceMgr)voidBatchNormalization. fit(INDArray input, LayerWorkspaceMgr workspaceMgr)voidLocalResponseNormalization. fit(INDArray input, LayerWorkspaceMgr workspaceMgr)INDArrayBatchNormalization. preOutput(INDArray x, Layer.TrainingMode training, LayerWorkspaceMgr workspaceMgr)INDArrayBatchNormalizationHelper. preOutput(INDArray x, boolean training, long[] shape, INDArray gamma, INDArray beta, INDArray mean, INDArray var, double decay, double eps, CNN2DFormat format, LayerWorkspaceMgr workspaceMgr) -
Uses of LayerWorkspaceMgr in org.deeplearning4j.nn.layers.objdetect
Methods in org.deeplearning4j.nn.layers.objdetect with parameters of type LayerWorkspaceMgr Modifier and Type Method Description INDArrayYolo2OutputLayer. activate(boolean training, LayerWorkspaceMgr workspaceMgr)static INDArrayYoloUtils. activate(@NonNull INDArray boundingBoxPriors, @NonNull INDArray input, boolean nchw, LayerWorkspaceMgr layerWorkspaceMgr)static INDArrayYoloUtils. activate(@NonNull INDArray boundingBoxPriors, @NonNull INDArray input, LayerWorkspaceMgr layerWorkspaceMgr)Pair<Gradient,INDArray>Yolo2OutputLayer. backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)voidYolo2OutputLayer. computeGradientAndScore(LayerWorkspaceMgr workspaceMgr)doubleYolo2OutputLayer. computeScore(double fullNetRegTerm, boolean training, LayerWorkspaceMgr workspaceMgr)INDArrayYolo2OutputLayer. computeScoreForExamples(double fullNetRegTerm, LayerWorkspaceMgr workspaceMgr) -
Uses of LayerWorkspaceMgr in org.deeplearning4j.nn.layers.ocnn
Methods in org.deeplearning4j.nn.layers.ocnn with parameters of type LayerWorkspaceMgr Modifier and Type Method Description INDArrayOCNNOutputLayer. activate(boolean training, LayerWorkspaceMgr workspaceMgr)INDArrayOCNNOutputLayer. activate(INDArray input, boolean training, LayerWorkspaceMgr workspaceMgr)Pair<Gradient,INDArray>OCNNOutputLayer. backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)doubleOCNNOutputLayer. computeScore(double fullNetRegTerm, boolean training, LayerWorkspaceMgr workspaceMgr)Compute score after labels and input have been set.INDArrayOCNNOutputLayer. computeScoreForExamples(double fullNetRegTerm, LayerWorkspaceMgr workspaceMgr)Compute the score for each example individually, after labels and input have been set.protected INDArrayOCNNOutputLayer. getLabels2d(LayerWorkspaceMgr workspaceMgr, ArrayType arrayType)protected INDArrayOCNNOutputLayer. preOutput2d(boolean training, LayerWorkspaceMgr workspaceMgr) -
Uses of LayerWorkspaceMgr in org.deeplearning4j.nn.layers.pooling
Methods in org.deeplearning4j.nn.layers.pooling with parameters of type LayerWorkspaceMgr Modifier and Type Method Description INDArrayGlobalPoolingLayer. activate(boolean training, LayerWorkspaceMgr workspaceMgr)Pair<Gradient,INDArray>GlobalPoolingLayer. backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr) -
Uses of LayerWorkspaceMgr in org.deeplearning4j.nn.layers.recurrent
Methods in org.deeplearning4j.nn.layers.recurrent with parameters of type LayerWorkspaceMgr Modifier and Type Method Description INDArrayBidirectionalLayer. activate(boolean training, LayerWorkspaceMgr workspaceMgr)INDArrayBidirectionalLayer. activate(INDArray input, boolean training, LayerWorkspaceMgr workspaceMgr)INDArrayGravesBidirectionalLSTM. activate(boolean training, LayerWorkspaceMgr workspaceMgr)INDArrayGravesBidirectionalLSTM. activate(INDArray input, boolean training, LayerWorkspaceMgr workspaceMgr)INDArrayGravesLSTM. activate(boolean training, LayerWorkspaceMgr workspaceMgr)Deprecated.INDArrayGravesLSTM. activate(INDArray input, boolean training, LayerWorkspaceMgr workspaceMgr)Deprecated.INDArrayLastTimeStepLayer. activate(boolean training, LayerWorkspaceMgr workspaceMgr)INDArrayLastTimeStepLayer. activate(INDArray input, boolean training, LayerWorkspaceMgr workspaceMgr)INDArrayLSTM. activate(boolean training, LayerWorkspaceMgr workspaceMgr)INDArrayLSTM. activate(INDArray input, boolean training, LayerWorkspaceMgr workspaceMgr)FwdPassReturnLSTMHelper. activate(Layer layer, NeuralNetConfiguration conf, IActivation gateActivationFn, INDArray input, INDArray recurrentWeights, INDArray inputWeights, INDArray biases, boolean training, INDArray prevOutputActivations, INDArray prevMemCellState, boolean forBackprop, boolean forwards, String inputWeightKey, INDArray maskArray, boolean hasPeepholeConnections, LayerWorkspaceMgr workspaceMgr)INDArrayMaskZeroLayer. activate(boolean training, LayerWorkspaceMgr workspaceMgr)INDArrayMaskZeroLayer. activate(INDArray input, boolean training, LayerWorkspaceMgr workspaceMgr)INDArrayRnnLossLayer. activate(boolean training, LayerWorkspaceMgr workspaceMgr)INDArrayRnnOutputLayer. activate(boolean training, LayerWorkspaceMgr workspaceMgr)INDArraySimpleRnn. activate(boolean training, LayerWorkspaceMgr workspaceMgr)INDArrayTimeDistributedLayer. activate(boolean training, LayerWorkspaceMgr workspaceMgr)INDArrayTimeDistributedLayer. activate(INDArray input, boolean training, LayerWorkspaceMgr workspaceMgr)static FwdPassReturnLSTMHelpers. activateHelper(BaseRecurrentLayer layer, NeuralNetConfiguration conf, IActivation gateActivationFn, INDArray input, INDArray recurrentWeights, INDArray originalInputWeights, INDArray biases, boolean training, INDArray originalPrevOutputActivations, INDArray originalPrevMemCellState, boolean forBackprop, boolean forwards, String inputWeightKey, INDArray maskArray, boolean hasPeepholeConnections, LSTMHelper helper, CacheMode cacheMode, LayerWorkspaceMgr workspaceMgr, boolean isHelperAllowFallback)Returns FwdPassReturn object with activations/INDArrays.Pair<Gradient,INDArray>BidirectionalLayer. backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)Pair<Gradient,INDArray>GravesBidirectionalLSTM. backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)Pair<Gradient,INDArray>GravesLSTM. backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)Deprecated.Pair<Gradient,INDArray>LastTimeStepLayer. backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)Pair<Gradient,INDArray>LSTM. backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)Pair<Gradient,INDArray>LSTMHelper. backpropGradient(NeuralNetConfiguration conf, IActivation gateActivationFn, INDArray input, INDArray recurrentWeights, INDArray inputWeights, INDArray epsilon, boolean truncatedBPTT, int tbpttBackwardLength, FwdPassReturn fwdPass, boolean forwards, String inputWeightKey, String recurrentWeightKey, String biasWeightKey, Map<String,INDArray> gradientViews, INDArray maskArray, boolean hasPeepholeConnections, LayerWorkspaceMgr workspaceMgr)Pair<Gradient,INDArray>MaskZeroLayer. backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)Pair<Gradient,INDArray>RnnLossLayer. backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)Pair<Gradient,INDArray>RnnOutputLayer. backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)Pair<Gradient,INDArray>SimpleRnn. backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)Pair<Gradient,INDArray>TimeDistributedLayer. backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)static Pair<Gradient,INDArray>LSTMHelpers. backpropGradientHelper(BaseRecurrentLayer layer, NeuralNetConfiguration conf, IActivation gateActivationFn, INDArray input, INDArray recurrentWeights, INDArray inputWeights, INDArray epsilon, boolean truncatedBPTT, int tbpttBackwardLength, FwdPassReturn fwdPass, boolean forwards, String inputWeightKey, String recurrentWeightKey, String biasWeightKey, Map<String,INDArray> gradientViews, INDArray maskArray, boolean hasPeepholeConnections, LSTMHelper helper, LayerWorkspaceMgr workspaceMgr, boolean isHelperAllowFallback)voidBidirectionalLayer. computeGradientAndScore(LayerWorkspaceMgr workspaceMgr)doubleRnnLossLayer. computeScore(double fullNetRegTerm, boolean training, LayerWorkspaceMgr workspaceMgr)INDArrayRnnLossLayer. computeScoreForExamples(double fullNetRegTerm, LayerWorkspaceMgr workspaceMgr)Compute the score for each example individually, after labels and input have been set.INDArrayRnnOutputLayer. computeScoreForExamples(double fullNetRegTerm, LayerWorkspaceMgr workspaceMgr)Compute the score for each example individually, after labels and input have been set.voidBidirectionalLayer. fit(INDArray data, LayerWorkspaceMgr workspaceMgr)protected INDArrayRnnOutputLayer. getLabels2d(LayerWorkspaceMgr workspaceMgr, ArrayType arrayType)protected INDArrayRnnOutputLayer. preOutput2d(boolean training, LayerWorkspaceMgr workspaceMgr)INDArrayBidirectionalLayer. rnnActivateUsingStoredState(INDArray input, boolean training, boolean storeLastForTBPTT, LayerWorkspaceMgr workspaceMgr)INDArrayGravesBidirectionalLSTM. rnnActivateUsingStoredState(INDArray input, boolean training, boolean storeLastForTBPTT, LayerWorkspaceMgr workspaceMgr)INDArrayGravesLSTM. rnnActivateUsingStoredState(INDArray input, boolean training, boolean storeLastForTBPTT, LayerWorkspaceMgr workspaceMgr)Deprecated.INDArrayLSTM. rnnActivateUsingStoredState(INDArray input, boolean training, boolean storeLastForTBPTT, LayerWorkspaceMgr workspaceMgr)INDArraySimpleRnn. rnnActivateUsingStoredState(INDArray input, boolean training, boolean storeLastForTBPTT, LayerWorkspaceMgr workspaceMgr)INDArrayBidirectionalLayer. rnnTimeStep(INDArray input, LayerWorkspaceMgr workspaceMgr)INDArrayGravesBidirectionalLSTM. rnnTimeStep(INDArray input, LayerWorkspaceMgr workspaceMgr)INDArrayGravesLSTM. rnnTimeStep(INDArray input, LayerWorkspaceMgr workspaceMgr)Deprecated.INDArrayLSTM. rnnTimeStep(INDArray input, LayerWorkspaceMgr workspaceMgr)INDArraySimpleRnn. rnnTimeStep(INDArray input, LayerWorkspaceMgr workspaceMgr)voidBidirectionalLayer. setInput(INDArray input, LayerWorkspaceMgr layerWorkspaceMgr)Pair<Gradient,INDArray>BidirectionalLayer. tbpttBackpropGradient(INDArray epsilon, int tbpttBackLength, LayerWorkspaceMgr workspaceMgr)Pair<Gradient,INDArray>GravesBidirectionalLSTM. tbpttBackpropGradient(INDArray epsilon, int tbpttBackwardLength, LayerWorkspaceMgr workspaceMgr)Pair<Gradient,INDArray>GravesLSTM. tbpttBackpropGradient(INDArray epsilon, int tbpttBackwardLength, LayerWorkspaceMgr workspaceMgr)Deprecated.Pair<Gradient,INDArray>LSTM. tbpttBackpropGradient(INDArray epsilon, int tbpttBackwardLength, LayerWorkspaceMgr workspaceMgr)Pair<Gradient,INDArray>SimpleRnn. tbpttBackpropGradient(INDArray epsilon, int tbpttBackLength, LayerWorkspaceMgr workspaceMgr) -
Uses of LayerWorkspaceMgr in org.deeplearning4j.nn.layers.samediff
Methods in org.deeplearning4j.nn.layers.samediff with parameters of type LayerWorkspaceMgr Modifier and Type Method Description INDArraySameDiffLayer. activate(boolean training, LayerWorkspaceMgr workspaceMgr)INDArraySameDiffOutputLayer. activate(boolean training, LayerWorkspaceMgr workspaceMgr)Pair<Gradient,INDArray>SameDiffLayer. backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)Pair<Gradient,INDArray>SameDiffOutputLayer. backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)doubleSameDiffOutputLayer. computeScore(double fullNetRegTerm, boolean training, LayerWorkspaceMgr workspaceMgr)INDArraySameDiffOutputLayer. computeScoreForExamples(double fullNetRegTerm, LayerWorkspaceMgr workspaceMgr)Pair<Gradient,INDArray[]>SameDiffGraphVertex. doBackward(boolean tbptt, LayerWorkspaceMgr workspaceMgr)INDArraySameDiffGraphVertex. doForward(boolean training, LayerWorkspaceMgr workspaceMgr) -
Uses of LayerWorkspaceMgr in org.deeplearning4j.nn.layers.training
Methods in org.deeplearning4j.nn.layers.training with parameters of type LayerWorkspaceMgr Modifier and Type Method Description Pair<Gradient,INDArray>CenterLossOutputLayer. backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)voidCenterLossOutputLayer. computeGradientAndScore(LayerWorkspaceMgr workspaceMgr)doubleCenterLossOutputLayer. computeScore(double fullNetRegTerm, boolean training, LayerWorkspaceMgr workspaceMgr)Compute score after labels and input have been set.INDArrayCenterLossOutputLayer. computeScoreForExamples(double fullNetRegTerm, LayerWorkspaceMgr workspaceMgr)Compute the score for each example individually, after labels and input have been set.protected INDArrayCenterLossOutputLayer. getLabels2d(LayerWorkspaceMgr workspaceMgr, ArrayType arrayType) -
Uses of LayerWorkspaceMgr in org.deeplearning4j.nn.layers.util
Methods in org.deeplearning4j.nn.layers.util with parameters of type LayerWorkspaceMgr Modifier and Type Method Description INDArrayMaskLayer. activate(boolean training, LayerWorkspaceMgr workspaceMgr)Pair<Gradient,INDArray>MaskLayer. backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr) -
Uses of LayerWorkspaceMgr in org.deeplearning4j.nn.layers.variational
Methods in org.deeplearning4j.nn.layers.variational with parameters of type LayerWorkspaceMgr Modifier and Type Method Description INDArrayVariationalAutoencoder. activate(boolean training, LayerWorkspaceMgr workspaceMgr)INDArrayVariationalAutoencoder. activate(INDArray input, boolean training, LayerWorkspaceMgr workspaceMgr)Pair<Gradient,INDArray>VariationalAutoencoder. backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)voidVariationalAutoencoder. computeGradientAndScore(LayerWorkspaceMgr workspaceMgr)voidVariationalAutoencoder. fit(INDArray data, LayerWorkspaceMgr workspaceMgr)INDArrayVariationalAutoencoder. generateRandomGivenZ(INDArray latentSpaceValues, LayerWorkspaceMgr workspaceMgr)Given a specified values for the latent space as input (latent space being z in p(z|data)), randomly generate output x, where x ~ P(x|z)protected INDArrayVariationalAutoencoder. getParamWithNoise(String param, boolean training, LayerWorkspaceMgr workspaceMgr)INDArrayVariationalAutoencoder. preOutput(boolean training, LayerWorkspaceMgr workspaceMgr)voidVariationalAutoencoder. setInput(INDArray input, LayerWorkspaceMgr layerWorkspaceMgr) -
Uses of LayerWorkspaceMgr in org.deeplearning4j.nn.layers.wrapper
Methods in org.deeplearning4j.nn.layers.wrapper with parameters of type LayerWorkspaceMgr Modifier and Type Method Description INDArrayBaseWrapperLayer. activate(boolean training, LayerWorkspaceMgr workspaceMgr)INDArrayBaseWrapperLayer. activate(INDArray input, boolean training, LayerWorkspaceMgr workspaceMgr)Pair<Gradient,INDArray>BaseWrapperLayer. backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)voidBaseWrapperLayer. computeGradientAndScore(LayerWorkspaceMgr workspaceMgr)voidBaseWrapperLayer. fit(INDArray data, LayerWorkspaceMgr workspaceMgr)voidBaseWrapperLayer. setInput(INDArray input, LayerWorkspaceMgr workspaceMgr) -
Uses of LayerWorkspaceMgr in org.deeplearning4j.nn.multilayer
Methods in org.deeplearning4j.nn.multilayer with parameters of type LayerWorkspaceMgr Modifier and Type Method Description INDArrayMultiLayerNetwork. activate(boolean training, LayerWorkspaceMgr mgr)INDArrayMultiLayerNetwork. activate(INDArray input, boolean training, LayerWorkspaceMgr mgr)protected INDArrayMultiLayerNetwork. activationFromPrevLayer(int curr, INDArray input, boolean training, LayerWorkspaceMgr mgr)Pair<Gradient,INDArray>MultiLayerNetwork. backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)voidMultiLayerNetwork. computeGradientAndScore(LayerWorkspaceMgr layerWorkspaceMgr)protected voidMultiLayerNetwork. doTruncatedBPTT(INDArray input, INDArray labels, INDArray featuresMaskArray, INDArray labelsMaskArray, LayerWorkspaceMgr workspaceMgr)voidMultiLayerNetwork. fit(INDArray data, LayerWorkspaceMgr workspaceMgr)voidMultiLayerNetwork. setInput(INDArray input, LayerWorkspaceMgr mgr)protected voidMultiLayerNetwork. validateArrayWorkspaces(LayerWorkspaceMgr mgr, INDArray array, ArrayType arrayType, int layerIdx, boolean isPreprocessor, String op) -
Uses of LayerWorkspaceMgr in org.deeplearning4j.nn.updater
Methods in org.deeplearning4j.nn.updater with parameters of type LayerWorkspaceMgr Modifier and Type Method Description voidBaseMultiLayerUpdater. update(Trainable layer, Gradient gradient, int iteration, int epoch, int batchSize, LayerWorkspaceMgr workspaceMgr)voidBaseMultiLayerUpdater. update(Gradient gradient, int iteration, int epoch, int batchSize, LayerWorkspaceMgr workspaceMgr)Update the gradient for the model. -
Uses of LayerWorkspaceMgr in org.deeplearning4j.nn.workspace
Methods in org.deeplearning4j.nn.workspace that return LayerWorkspaceMgr Modifier and Type Method Description LayerWorkspaceMgrLayerWorkspaceMgr.Builder. build()static LayerWorkspaceMgrLayerWorkspaceMgr. noWorkspaces()static LayerWorkspaceMgrLayerWorkspaceMgr. noWorkspaces(Map<String,org.bytedeco.javacpp.Pointer> helperWorkspacePointers)static LayerWorkspaceMgrLayerWorkspaceMgr. noWorkspacesImmutable() -
Uses of LayerWorkspaceMgr in org.deeplearning4j.optimize
Methods in org.deeplearning4j.optimize with parameters of type LayerWorkspaceMgr Modifier and Type Method Description voidSolver. optimize(LayerWorkspaceMgr workspaceMgr) -
Uses of LayerWorkspaceMgr in org.deeplearning4j.optimize.api
Methods in org.deeplearning4j.optimize.api with parameters of type LayerWorkspaceMgr Modifier and Type Method Description Pair<Gradient,Double>ConvexOptimizer. gradientAndScore(LayerWorkspaceMgr workspaceMgr)The gradient and score for this optimizerbooleanConvexOptimizer. optimize(LayerWorkspaceMgr workspaceMgr)Calls optimizedoubleLineOptimizer. optimize(INDArray parameters, INDArray gradient, INDArray searchDirection, LayerWorkspaceMgr workspaceMgr)Line optimizervoidConvexOptimizer. updateGradientAccordingToParams(Gradient gradient, Model model, int batchSize, LayerWorkspaceMgr workspaceMgr)Update the gradient according to the configuration such as adagrad, momentum, and sparsity -
Uses of LayerWorkspaceMgr in org.deeplearning4j.optimize.solvers
Methods in org.deeplearning4j.optimize.solvers with parameters of type LayerWorkspaceMgr Modifier and Type Method Description Pair<Gradient,Double>BaseOptimizer. gradientAndScore(LayerWorkspaceMgr workspaceMgr)doubleBackTrackLineSearch. optimize(INDArray parameters, INDArray gradients, INDArray searchDirection, LayerWorkspaceMgr workspaceMgr)booleanBaseOptimizer. optimize(LayerWorkspaceMgr workspaceMgr)Optimize call.booleanStochasticGradientDescent. optimize(LayerWorkspaceMgr workspaceMgr)doubleBackTrackLineSearch. setScoreFor(INDArray parameters, LayerWorkspaceMgr workspaceMgr)voidBaseOptimizer. updateGradientAccordingToParams(Gradient gradient, Model model, int batchSize, LayerWorkspaceMgr workspaceMgr) -
Uses of LayerWorkspaceMgr in org.deeplearning4j.preprocessors
Methods in org.deeplearning4j.preprocessors with parameters of type LayerWorkspaceMgr Modifier and Type Method Description INDArrayKerasFlattenRnnPreprocessor. backprop(INDArray epsilons, int miniBatchSize, LayerWorkspaceMgr workspaceMgr)INDArrayPermutePreprocessor. backprop(INDArray output, int miniBatchSize, LayerWorkspaceMgr workspaceMgr)INDArrayReshapePreprocessor. backprop(INDArray output, int miniBatchSize, LayerWorkspaceMgr workspaceMgr)INDArrayKerasFlattenRnnPreprocessor. preProcess(INDArray input, int miniBatchSize, LayerWorkspaceMgr workspaceMgr)INDArrayPermutePreprocessor. preProcess(INDArray input, int miniBatchSize, LayerWorkspaceMgr workspaceMgr)INDArrayReshapePreprocessor. preProcess(INDArray input, int miniBatchSize, LayerWorkspaceMgr workspaceMgr) -
Uses of LayerWorkspaceMgr in org.deeplearning4j.util
Methods in org.deeplearning4j.util with parameters of type LayerWorkspaceMgr Modifier and Type Method Description static INDArrayConvolutionUtils. adapt2dMask(INDArray mask, INDArray output, @NonNull CNN2DFormat format, LayerWorkspaceMgr workspaceMgr, ArrayType type)static Pair<INDArray,int[]>TimeSeriesUtils. pullLastTimeSteps(INDArray pullFrom, INDArray mask, LayerWorkspaceMgr workspaceMgr, ArrayType arrayType)Extract out the last time steps (2d array from 3d array input) accounting for the mask layer, if present.static INDArrayTimeSeriesUtils. reshape2dTo3d(INDArray in, long miniBatchSize, LayerWorkspaceMgr workspaceMgr, ArrayType arrayType)static INDArrayConvolutionUtils. reshape2dTo4d(INDArray in2d, long[] toShape, CNN2DFormat format, LayerWorkspaceMgr workspaceMgr, ArrayType type)static INDArrayConvolutionUtils. reshape2dTo5d(Convolution3D.DataFormat format, INDArray in2d, long n, long d, long h, long w, long ch, LayerWorkspaceMgr workspaceMgr, ArrayType type)static INDArrayConvolutionUtils. reshape3dMask(INDArray mask, LayerWorkspaceMgr workspaceMgr, ArrayType type)static INDArrayTimeSeriesUtils. reshape3dTo2d(INDArray in, LayerWorkspaceMgr workspaceMgr, ArrayType arrayType)static INDArrayConvolutionUtils. reshape4dMask(INDArray mask, LayerWorkspaceMgr workspaceMgr, ArrayType arrayType)static INDArrayConvolutionUtils. reshape4dTo2d(INDArray in, CNN2DFormat format, LayerWorkspaceMgr workspaceMgr, ArrayType type)static INDArrayConvolutionUtils. reshape4dTo2d(INDArray in, LayerWorkspaceMgr workspaceMgr, ArrayType type)static INDArrayConvolutionUtils. reshape5dTo2d(Convolution3D.DataFormat format, INDArray in, LayerWorkspaceMgr workspaceMgr, ArrayType type)static INDArrayConvolutionUtils. reshapeCnn3dMask(Convolution3D.DataFormat format, INDArray mask, INDArray label, LayerWorkspaceMgr workspaceMgr, ArrayType type)static INDArrayConvolutionUtils. reshapeMaskIfRequired(INDArray mask, INDArray output, CNN2DFormat format, LayerWorkspaceMgr workspaceMgr, ArrayType type)static INDArrayConvolutionUtils. reshapeMaskIfRequired(INDArray mask, INDArray output, LayerWorkspaceMgr workspaceMgr, ArrayType type)static INDArrayTimeSeriesUtils. reshapePerOutputTimeSeriesMaskTo2d(INDArray perOutputTimeSeriesMask, LayerWorkspaceMgr workspaceMgr, ArrayType arrayType)static INDArrayTimeSeriesUtils. reshapeTimeSeriesMaskToCnn4dMask(INDArray timeSeriesMask, LayerWorkspaceMgr workspaceMgr, ArrayType arrayType)Reshape time series mask arrays.static INDArrayTimeSeriesUtils. reshapeTimeSeriesMaskToVector(INDArray timeSeriesMask, LayerWorkspaceMgr workspaceMgr, ArrayType arrayType)Reshape time series mask arrays.static INDArrayTimeSeriesUtils. reverseTimeSeries(INDArray in, LayerWorkspaceMgr workspaceMgr, ArrayType arrayType)Reverse an input time series along the time dimensionstatic INDArrayTimeSeriesUtils. reverseTimeSeries(INDArray in, LayerWorkspaceMgr workspaceMgr, ArrayType arrayType, RNNFormat dataFormat)static INDArrayTimeSeriesUtils. reverseTimeSeriesMask(INDArray mask, LayerWorkspaceMgr workspaceMgr, ArrayType arrayType)Reverse a (per time step) time series mask, with shape [minibatch, timeSeriesLength]
-